

OREOS - Orchestration and Resource optimization

for rEliable and lOw-latency Services

Estudos Preliminares na área do Projeto

Nº. Entregável: E2.1 At ividade: A2

Data: 30/04/2021 Versão: V1.0

Nº. Referência Doc.: OREOS_E2.1 Nível de Disseminação: Público

Autor(es): Universidade de Coimbra

Palavras-chave: Orquestração, alocação de recursos, monitoria e sistemas analíticos.

Resumo:

O projeto OREOS visa uma orquestração e uma utilização de recursos ótima em cenários com serviços de

baixa latência e de elevada resiliência. Este documento apresenta um conjunto de tecnologias e mecanismos

que permitem monitorizar e recolher métricas necessários para os mecanismos de otimização, tendo

presente as plataformas de orquestração e de virtualização atualmente existentes.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 2 de 87

Aut oria e controlo de v ersões

Autores do Documento

Organização Autores

Universidade de Coimbra
Bruno Sousa; Karima Velasquez; Zé Luís; Marco Silva; Nuno

Lourenço; Marília Curado

Altran Portugal SA Marco Araújo; Bruno Parreira

Instituto Pedro Nunes David Abreu

Histórico do documento

Edição Data Notas

0.1 2021/04/06 Definição da estrutura do documento

0.2 2021/04/13 Integração de conteúdos

1.0 2021/04/30 Versão final

Este projeto é financiado pelo programa Portugal 2020, ao abrigo do sistema de incentivos à investigação e

desenvolvimento tecnológico, contrato número POCI-01-0247-FEDER-049029.

Declaração de confidencialidade:

A informação contida neste documento é propriedade exclusiva copromotor líder do projeto. A informação

gerada no âmbito das atividades do projeto não será reproduzida, disseminada, modificada ou comunicada

a qualquer parte externa ao consórcio sem o expresso consentimento prévio da entidade líder do projeto.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 3 de 87

Sum ário Executivo

O projeto OREOS visa conceber e implementar uma plataforma de orquestração fim-a-fim para

provisionamento e gestão de serviços críticos, incluindo comunicações veiculares, redes de distribuição elétrica,

ou comunicações de emergência de segurança pública. Comunicações e redes que assentam nas tecnologias

de comunicação móvel de quinta geração (5G). De forma particular, o suporte de ultra reliable and low latency

communications (URLLC) em 5G é essencial para serviços críticos em redes veiculares e em cidades inteligentes.

Os serviços críticos visados pelo projeto OREOS são caracterizados por requisitos de baixa latência e elevada

fiabilidade, que beneficiam da combinação otimizada de modelos arquiteturais distintos, tais como computação

Fog, Edge e Cloud. É neste contexto que este documento apresenta abordagens de otimização para serviços

críticos, introduz os sistemas de monitoria, os sistemas analíticos para recolha e análise de dados necessários

para os mecanismos/algoritmos inteligentes. Adicionalmente são também apresentadas as plataformas de

orquestração e de virtualização de recursos que permitem uma gestão autónoma de recursos.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 4 de 87

Abstract

OREOS aims to design and implement an end-to-end orchestration platform for provisioning and managing

critical services (such as vehicle communications, electrical distribution networks or emergency

communications for public safety). The evolution in the 5G networks in particular the support of services based

on ultra reliable and low latency communications (URLLC), enables critical services for vehicles communications

and smart cities.

The critical services targeted by the OREOS project are characterized by low latency and high reliability

requirements, which benefit from the optimized combination of different architectural models, such as Fog,

Edge and Cloud computing. It is in this context that the current document presents the suitable optimization

approaches for critical services, introduces the monitoring and analytics systems to collect and analyse data,

which is deemed as necessary for advanced mechanisms/algorithms. Additionally, the document also presents

the orchestration and virtualization platforms that contribute to the autonomous and optimized management

of resources.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 5 de 87

Table of contents

Table of contents .. 5

List of figures ... 8

List of tables ...10

Acronyms..11

1. Introduction..14

2. Application Scenario ...17

3. State of the Art ..19

3.1 Monitoring and Analytics Solutions..19

3.1.1 Introduction ...19

3.1.2 Monitoring solutions ..20

3.1.2.1 Prometheus..20

3.1.2.2 Telegraf ...22

3.1.2.3 Nagios..23

3.1.2.4 Zabbix ..25

3.1.2.5 Summary...26

3.1.3 Analytics solutions ..30

3.1.3.1 Druid ..30

3.1.3.2 Drools ..31

3.1.3.3 Kapacitor...33

3.1.3.4 PNDA ...33

3.1.3.5 Pinot ..35

3.1.3.6 ClickHouse ..36

3.1.3.7 Non open source analytical solutions ..37

3.1.3.8 Summary [ALTRAN, with UC collab]..37

3.2 Resource Allocation mechanisms ...38

3.2.1 Introduction ...38

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 6 de 87

3.2.2 Architectures for resource allocation ...39

3.2.2.1 OpenFog Consortium Reference Architecture (guidelines)...39

3.2.2.2 Centralized vs. Distributed Approaches...41

3.2.2.3 Cloud/Fog Orchestrator Architectures...41

3.2.2.4 Summary...48

3.2.3 Optimization approaches ..48

3.2.3.1 Design Models ...49

3.2.3.2 Optimization Mechanisms ..51

3.2.3.3 Graph Partition..53

3.2.3.4 Machine Learning ...53

3.2.3.5 Summary...55

3.2.4 Decision approaches ..56

3.2.4.1 Fairness aspects ..56

3.2.4.2 Resource usage aspects ..56

3.2.4.3 Quality of Service aspects ...57

3.2.4.4 Mobility support aspects...58

3.2.4.5 Resilience aspects...59

3.2.4.6 Summary...59

3.3 Orchestration Platforms ...60

3.3.1 Introduction ...60

3.3.1.1 ONAP ...61

3.3.1.2 OSM ...66

3.3.1.3 Other platforms ..68

3.3.1.4 Summary...69

3.4 Virtualization ...70

3.4.1 Introduction ...70

3.4.1.1 OpenStack ..71

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 7 de 87

3.4.1.2 Kubernetes ...73

3.4.1.3 Service Mesh..75

3.4.1.4 Summary...78

4. Conclusion...79

5. References ..81

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 8 de 87

List of figures

Figure 1: Reference scenario..17

Figure 2: pedestrian crossing (source [5GAA_USECASE]) ..18

Figure 3: Monitoring framework (source: [TNOVA_MON])...19

Figure 4: Architecture of Prometheus and some of its ecosystem components (source [BRAZIL_MON])21

Figure 5: Telegraf architecture (source [YTSENG_RTMS5NCP]) ...23

Figure 6: Nagios architecture (source [KOCJAN_MON]) ..24

Figure 7: Zabbix components (source [SHOKHIN_MON]) ..25

Figure 8: Example of solution for monitoring with diverse tools ...27

Figure 9: Architecture of monitoring & analytics using Prometheus+Telegraf ...28

Figure 10: Druid architecture ...30

Figure 11: Kafka bus serving real-time nodes...31

Figure 12: Rule’s engine (source [LEY_ANA])..32

Figure 13: Architecture of Pinot (source [JEAN_PINOT]) ...36

Figure 14: OpenFog RA high-level description (source [OPENFOG_RAFC]) ...40

Figure 15: SORTS Logical Infrastructure (source [VELASQUEZ_SORTS]) ...42

Figure 16: SORTS Orchestrator components (source [VELASQUEZ_SORTS])...43

Figure 17: Service Orchestrator Architecture - SOAFI (source [BRITO_SOAFI]) ..44

Figure 18: ETSI MEC Reference Architecture (source [ETSIMEC_FRA]) ..45

Figure 19: CONCERT Architecture (source [LIU_CONCERT]) ...47

Figure 20: Example of optimization approaches integration, considering policies and multiple data sources

(source [KAPADIA_ORC])...49

Figure 21: ONAP scope ..61

Figure 22: CLAMP workflow (source [KAPADIA_ORC]) ...64

Figure 23: ONAP monitoring & analytics ...65

Figure 24: OSM Reference Architecture (source [ETSI_OSM]) ...66

Figure 25: OSM and monitoring (source [ETSI_OSM_USERGUIDE])..67

Figure 26: OpenBaton architecture (source [CARAGUAY_ORC])..68

Figure 27: Cloudify/ONAP fusion (source [SOUSA_ORC]) ..70

Figure 28: OpenStack virtualization (source: [SHRIVASTWA_VIR]) ..71

Figure 29: Flow of OpenStack components ..72

Figure 30: Architecture of Kubernetes (source [DAVID_K8S]) ..74

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 9 de 87

Figure 31: Service Mesh Architecture (source [WLI_SMCSAFRO]) ..76

Figure 32: Service mesh example of application running in VMs and K8S (source [ISTIO_BOOKINFO])77

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 10 de 87

List of tables

Table 1: Service level requirements for pedestrian crossing (source [5GAA_USECASE]) ...18

Table 2: Comparison between Prometheus + Telegraf, Nagios and Zabbix’s functional requirements26

Table 3: Monitoring solutions ..38

Table 4: Resource allocation solutions...48

Table 5: Optimization approaches summary ..55

Table 6: Decision approaches solutions...60

Table 7: Comparison of orchestration platforms...69

Table 8: Virtualization solutions ..78

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 11 de 87

Acronyms

AAA Authentication Accounting and Authorization

API Application Programming Interface

BGP Border Gateway Protocol

BSS Business Support Systems

CLAMP Closed Loop Automation Management Platform

CNI Container Network Interface

CNF Containerized Network Function

CNN Convolutional Neural Network

DCAE Data Collection, Analytics and Events

DMaaP Data Movement as a Platform

DNS Domain Name Service

DSL Domain Specific Language

ETL Extract Transform Load

ETSI European Telecommunications Standards Institute

FCAPS Fault configuration accounting performance security

GUI Graphical User Interface

HAS Homing and Allocation Service

HNF Hardware Network Function

JSON JavaScript Object Notation

IaaS Infrastructure as a Service

ILP Integer Linear Programming

IoT Internet of Things

ISG Industry Specification Group

ITU International Telecommunications Union

LCM Location-Aware Computing Management

LDAP Lightweight Directory Access Protocol

LSTM Long Short-Term Memory

LXC Linux Containers

MEC Mobile Edge Computing

ML Machine Learning

MPLS Multi Protocol Label Switching

mTLS Mutual Transport Layer Security

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 12 de 87

NF Network Function

NFV Network Functions Virtualization

NS Network Service

OAM Operations administration and management

OLAP Online Analytical Processing

ONAP Open Network Automation Platform

OOF ONAP Optimization Framework

OSM Open Source MANO

OSS Operational support systems

OVN Open Virtual Network

PNF Physical Network Function

PKI Public Key Infrastructure

QoE Quality of Experience

QoS Quality of Service

RA Reference Architecture

RIE Radio Interfacing Equipment

SBA Service Based Architecture

SCALE Security Cognition Agility Latency Efficiency

SDH Synchronous Digital Hierarchy

SDN Software Defined Networking

SDC Service Design and Creation

SLA Service Level Agreement

SO Service Orchestration

SONET Synchronous Optical Network

SQL Structured Query Language

SOAFI Service Orchestrator Architecture for Fog-enable Infrastructure

SORTS Supporting the Orchestration of Resilient and Trustworthy Fog Services

SSO Single Sign On

TICK Telegraf Influx Chronograf Kapacitor

TLS Transport Layer Security

TOSCA Topology and Orchestration Specification for Cloud Applications

URLLC Ultra reliable and Low-Latency Communications

QoS Quality of Service

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 13 de 87

VES VNF Event Stream

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFI Virtual Network Function Infrastructure

VNFM Virtual Network Function Manager

VNFO Virtual Network Function Orchestrator

WDM Wavelength Division Multiplexing

WIM WAN Infrastructure Manager

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 14 de 87

1. Introduction

OREOS aims to design and implement an end-to-end orchestration platform for provisioning and managing

critical services (such as vehicle communications, electrical distribution networks or emergency

communications for public safety). The evolution in the 5G networks in particular the support of services based

on ultra reliable and low latency communications (URLLC), enables critical services for vehicles communications

and smart cities.

The critical services targeted by the OREOS project are characterized by low latency and high reliability

requirements, which benefit from the optimized combination of different architectural models, such as Fog,

Edge, and Cloud computing. The application scenario runs in an urban-city context and aims to enhance the

safety of people by allowing the exchange of information between the city infrastructure (e.g., video cameras)

and the vehicles circulating on the roads. The communication paradigm aims to inform vehicles regarding the

presence of people in the pedestrian crossings to avoid accidents.

The critical services run in diverse platforms, which require monitoring solutions to decrease the potential

system failures and maximize the network performance. When integrated with analytics systems, the

monitoring solutions allow the implementation of network policies in a scalable fashion, where decisions can

be taken considering the collected system information and advanced visualization approaches. Monitoring

Solutions like Prometheus, Nagios, Zabbix [KOCJAN_MON] and others are overviewed regarding their potential

use in the OREOS platform. In complement, open-source platforms for data analytics like Druid [FANGJIN_ANA],

Drools [LEY_ANA], PNDA [PNDA_GUIDE], among others are also discussed regarding their scalability to analyse

high volumes of data, their architectures to distribute data, among several components/nodes to enhance

processing of queries. Besides Open Source Big Data (OLAP) systems. Despite the existence of proprietary

analytical solutions from major technological players like Microsoft Power BI, IBM Cognos, Google data studio

and Google BigQuery, the OREOS project focuses on open source technologies to conceive the OREOS platform.

The combination of the Internet of Things (IoT), Fog, and Cloud embraces a complex scenario where in some

cases it is not suitable to migrate or apply well-known solutions or mechanisms from other domains or

paradigms. Two particular aspects to take into consideration are: (1) Resource Management, which requires

the design and development of mechanisms that handle tasks such as Scheduling, Path Computation, Discovery

and Allocation, and Interoperability; and (2) Performance that deals with Latency, Resilience, and Prediction

and Optimization from the gauges, mechanisms, and algorithms point of view [VELASQUEZ_CHALL]. The

document identifies and discusses reference architectures for resource allocation like the OpenFog

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 15 de 87

[OPENFOG_RAFC]. In addition, the Cloud-to-Object continuum requires appropriate approaches tackling

resource management in an efficient manner considering complex scenarios, like the SORTS project

[VELASQUEZ_SORTS], or even the Mobile Edge Computing (MEC) architecture promoted by the European

Telecommunications Standards Institute (ETSI) [ETSIMEC_FRA].

The allocation of resources is an NP-hard problem commonly tackled by the different techniques that employ

a set of decision factors like fairness aspects (e.g., deal with energy consumption, latency issues)

[GODINHO_FAIR], resource usage aspects (e.g., placing IoT services in Fog nodes considering Quality of Service

(QoS) requirements) [SKARLAT_RU], QoS aspects (e.g., placing applications in Fog nodes to maximize Quality of

Experience (QoE) and reduce deployment time) [MAHMUD_LAT], among other aspects.

Optimization plays a crucial role in several fields like architecture, medicine, engineering among others. Its

purpose is to find the best solution for the established objective. In this regard, several steps are required for

an optimization approach, where the first one includes identifying the decision variables, the definition of the

objective function, and a second one devoted to the calculations to obtain the optimal solution. Several

approaches for optimization can be followed, including Linear Programming (ILP) techniques that have

limitations regarding the required computational effort and the size of the problem. Heuristics methods are

often employed due to the reasonable quality with little computational effort. On the other hand, Machine

Learning (ML) approaches are gaining momentum in diverse domains; for instance, in autonomous driving the

majority of the literature is focused on multi-modal object detection and semantic segmentation [FENG_ML],

in resource allocation for 5G networks [LEE_ML, WANG_ML] with Deep Learning approaches.

Orchestration platforms support Network Function Virtualization (NFV) Management and Orchestration. For

NFV Management virtualization layers are proposed to support different physical infrastructures. In addition,

approaches like Software Defined Networking (SDN) are relevant to allow the management of network

resources in agnostic fashion regarding the underlying physical technology (e.g., wireless, optical networks, etc).

ETSI has been specifying [ETSI_NFV] several standards to enhance interoperability between orchestration

platforms, to enable the multi-tenancy support in 5G networks, to support the Service Based Architecture (SBA),

to facilitate Multi-access Edge Computing (MEC) paradigm [ETSIMEC_FRA], among other critical functionalities

related with NFV. Open Network Automation Platform (ONAP) [KAPADIA_ORC] is one of the most complete

platforms to design, create and manage the lifecycle of network services. In addition, ONAP supports Physical

Network Functions (PNF) along with Virtual Network Function (VNF) that can run in different virtualization

infrastructures like OpenStack and Kubernetes.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 16 de 87

The document also presents current concepts like Service Mesh that are designed to facilitate service-to-service

communication through service discovery, routing, load balancing, traffic configuration, encryption,

authentication, authorization and monitoring approaches [NIST_800-204].

This document is structured as follows: Section 0 presents a generic application scenario, Section 3 presents

the monitoring, analytical solutions, optimization approaches, virtualization and orchestration mechanisms that

can be employed in OREOS, considering the general requirements, and Section 4 concludes the paper.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 17 de 87

2. Application Scenario

The environment in which this scenario runs in of urban nature, i.e., city context, and aims to enhance the safety

of people in their daily life1. In particular, when pedestrians are crossing the road, there is the need to inform

vehicles that are approaching to reduce the velocity to stop the vehicle before reaching pedestrians.

Figure 1: Reference scenario

The detection of pedestrians in the crossings or their intention to cross, is performed through video cameras,

employed for city surveillance, which through intelligent mechanisms are able to detect persons, detect

pedestrian crossings and the movement of users. With the network information regarding connected, nearby

or approaching vehicles, there is the possibility to provide in advance the information of the pedestrian’s

presence on the roads. This concept is illustrated in Figure 2, whereas a traditional vehicle needs an

unobstructed view to proceed safely, by means of telecommunications technology, this view can be provided

by a camera or other vehicles with a better view:

1 Considering that the whole architecture developed in this project holds applicability for URLLC Services, other potential
scenarios could be e.g., services for smart cities or autonomous driving.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 18 de 87

Figure 2: pedestrian crossing (source [5GAA_USECASE])

Some potential service level requirements (SLR) can be devised as follows:

Table 1: Service level requirements for pedestrian crossing (source [5GAA_USECASE])

SLR name SLR unit SLR value Comments

Range m 500 Message does not need an extreme range, as it only needs
to reach nearby vehicles that should stop for a pedestrian.

However, vehicles on high-speed roads will need adequate

time to stop.

Latency ms 100 Exchange of messages must happen quickly, but a
manoeuvre will only be initiated upon agreement, so slow

messaging is not necessarily a safety risk.

Reliability % 99.9 Since a manoeuvre will only be initiated upon agreement,

dropped messages will not result in an immediate and

significant safety risk

Velocity m/s 19.4 Upper end of the speed that a vehicle will be driving at on a
road with a pedestrian crossing (70 km/h)

Vehicle Density Vehicles/km2 730 Assumes vehicles within 500 m radius of roads with 2 lanes
of traffic in each direction.

Positioning m 0.2 If a pedestrian is standing next to a roadway, it only takes a
slight position error to place them in the middle of the street

on a map, or directly in the trajectory of a vehicle.
Alternatively, if the pedestrian is crossing, a small error could

falsely indicate to a nearby vehicle that the pedestrian is on

the sidewalk

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 19 de 87

3. State of the Art

This section overviews the most relevant technologies for the project, including monitoring and analytics

solutions. It also overviews resource allocation approaches and the most suitable optimization mechanisms,

considering the high-level requirements of the generic scenario(s) presented in Section 0.

3.1 Monitoring and Analytics Solutions

This section provides an overview of monitoring and analytical solutions.

3.1.1 Introduction

Analytical solutions allow network engineers to query, analyse and manipulate data and implement network

policies using that data as an underlying asset. Monitoring solutions constitute a handy tool to maximize the

network performance and to decrease the potential system failures; by focusing on computation, storage and

memory resources of the infrastructure, through the analysis and visualization of the collected system

information. An example of a monitoring framework is illustrated in Figure 3.

Figure 3: Monitoring framework (source: [TNOVA_MON])

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 20 de 87

The monitoring tool periodically polls an OpenStack service called ceilometer for collecting metrics regarding all

deployed physical and virtual resources and saves them into a time series database such as Influx or other. The

agent polls VNF metrics and saves them into the same database. A Graphical User Interface (GUI) such as

Grafana, or other, is then connected to this database to provide an interactive dashboard.

3.1.2 Monitoring solutions

This section details some of the most promising and popular monitoring solutions currently available.

3.1.2.1 Prometheus

Prometheus is an open-source metrics-based system used for event monitoring and alerting, relying on a robust

data model and query language for providing the required metrics to precisely analyse infrastructure and

application performance [BRAZIL_MON].

The system provides libraries for the most popular coding languages, such as Python, Java, Go, C#, in order to

develop custom applications. Software such as docker and Kubernetes are already instrumented in Prometheus

client, and, for third-party software that exposes metrics in a data format not recognized by the Prometheus

scrapper, there are exporters already available and public to make the necessary conversions to the known

format. These exporters provide metrics for environments that can possibly be running, for example,

applications using MySQL, PostgreSQL, SNMP, Kafka, etc.

The main features of the monitoring tool are the following:

• Multidimensional data model with time series data identified by metric name and key/value pairs

• Flexible Query Language to leverage dimensionality (PromQL)

• No reliance on distributed storage; single server nodes are autonomous

• Time series collection via a pull model over HTTP

• Pushing time series supported via an intermediary gateway

• Targets discovered via service discovery or static configuration

• Multiple modes of graphing and dashboarding support

Figure 4 illustrates the architecture of the Prometheus solution:

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 21 de 87

Figure 4: Architecture of Prometheus and some of its ecosystem components (source [BRAZIL_MON])

Prometheus scrapes metrics from instrumented jobs/exporters directly, based on the target provided by the

Service Discovery. For components that cannot be scraped in a direct manner, the Prometheus Push gateway

is used to allow short-lived jobs to be pushed into an intermediary job, which Prometheus can scrape.

All scraped samples are stored locally, and Prometheus runs rules over this data to either aggregate and record

new time series from existing data or generate alerts. Summarizing, Prometheus has the following components:

• Prometheus server to scrape, store and centralize time series data2.

• Client libraries for instrumenting application code that are available in programming languages such as

Go, Python, Java/JVM, Ruby (official ones), #/.NET, Node.js, Haskell, Erlang and Rust (third-party ones),

in order to allow the developers to define metrics and add the desired instrumentation to the

application code.

• A Service Discovery mechanism, such as Kubernetes, EC2, or Consul, to provide the target system to

monitor.

2 Prometheus stores all data as time series, which are streams of timestamped values belonging to the same metric and
set of labelled dimensions and may also generate temporary derived time series as the result of queries, where each time
series is uniquely identified by its metric name and optional key-value pairs called labels. Labels enable Prometheus's
dimensional data model: any given combination of labels for the same metric name identifies a particular dimensional
instantiation of that metric. The query language allows filtering and aggregation based on these dimensions. Changing any
label value, including adding or removing a label, will create a new time series.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 22 de 87

• A Push gateway that is used for scraping metrics from applications and passing on the data to

Prometheus, when the pull method is not possible (e.g., due to a firewall).

• Multiple special-purpose exporters that typically run on the monitored host to export local metrics,

since not always will it be possible to add direct instrumentation to the monitoring application and

Prometheus deals with this problem with the aid of exporters, which are basically pieces of software

that will run alongside the target application which the developer wishes to collect metrics.

• An AlertManager tool that receives alerts from Prometheus servers and turns them into notifications,

where related alerts can be aggregated into one notification, throttled to reduce pager storms, and

different routing and notification outputs can be configured for each of the different teams monitoring

the system.

• A GUI dashboard such as Grafana for reporting purposes that facilitates data analysis, especially when

the scope is to assess metrics (Grafana supports the time-series databases from Prometheus and

InfluxDB, as well as MySQL and OpenTSDB).

3.1.2.2 Telegraf

Telegraf is a plugin-driven server agent for collecting and sending metrics and events from databases, systems,

and IoT sensors. The agent can collect a variety of metrics from a wide variety of inputs into a wide array of

outputs. Telegraf is a component of the TICK stack, promoted by Influx [YTSENG_RTMS5NCP].

This is possible because Telegraf has many available plugins at the user's disposal, written by experts, providing

great flexibility for the agent to adapt to any of the developer needs. If the required plugin is not available, it is

also possible to write a custom plugin to satisfy the developer needs. Among its features, the following can be

highlighted:

• Custom high performance datastore written specifically for time series data

• Expressive SQL-like query language to easily query aggregated data (Flux)

• Plugins support for other data ingestion protocols

• Simple, high performing write and query HTTP APIs.

• Continuous queries automatically compute aggregate data to make frequent queries more efficient

Figure 5 illustrates the architecture of the Telegraf solution:

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 23 de 87

Figure 5: Telegraf architecture (source [YTSENG_RTMS5NCP])

The ecosystem includes a time series database3, real-time analytics engine and visualization pane and has

integrated input plugins to allow pulling metrics from the system or third-party APIs. Also features output

plugins that, in this case, will allow the data to be sent to a host of external data stores, services and message

queues. If the need arises, there is also the option to build custom plugins upon the platform and make them

fit into the monitoring tool.

3.1.2.3 Nagios

Nagios is an open-source tool designed for system monitoring, whose main purpose is to provide constant

feedback on monitored systems, networks and IT infrastructure (active checks), being capable of receiving

information, regarding other processes or machines, from systems it does not actively monitor (passive checks).

System monitoring is split into two different categories, hosts and services. Hosts represent the physical or

virtual device in the network, such as routers, switches, servers, etc. For the services, these represent particular

functionalities to be monitored, which are running on a host machine, for example, a SecureShell server.

3 InfluxDB provides a purpose-built time series database to store all the metrics, events and logs in a central platform. The
platform also provides a vast set of plugins for the Telegraf collecting agent, and many client libraries for the most popular
programming languages, such as Go, Python, Java, Node.js, among others. These libraries allow developers to provide
integration between the platform and the applications for data analytics.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 24 de 87

In order to perform all of the necessary checks, Nagios uses plugins. These are simply external components,

Nagios passes information to be checked and what are the limits which trigger the warning and critical state.

Nagios comes with a set of standard plugins that allow performance checks for almost all the services mostly

used by organizations. If the plugin is not available, it is possible to write a custom plugin according to the

developer needs.

Designed with scalability and flexibility in mind, Nagios main features are as follows [KOCJAN_MON]:

• Commands which define how Nagios should perform on particular types of verifications.

• Time periods defining the time periods in which operations should or should not be performed.

• Hosts and host groups to aggregate multiple hosts into a single group. A single host can also be part of

various groups.

• Services, various functionalities or resources to monitor on the host.

• Contacts to notify the respective teams dealing with information of how and when they should be

contacted.

• Notifications defining who should receive each of the notifications.

• Escalations are an extension of the notifications, defined after a specific object is in the same state for

a period of time, and send the information to a different group to handle the situation.

Figure 6 illustrates the architecture of the Nagios solution:

Figure 6: Nagios architecture (source [KOCJAN_MON])

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 25 de 87

Nagios stores all the numeric data collected from systems and services in a RRD Database. To make use of this

database it is used N2RRD (Nagios to Round Robin Database) which is a Nagios add-on tool, which stores

performance data generated by Nagios plugins into a Round-Robin-Database.

3.1.2.4 Zabbix

The Zabbix monitoring solution is designed for a server/agent architecture, in which the Zabbix server runs on

a standalone machine to be able to collect and aggregate monitoring data sent by the Zabbix agents. In addition,

Zabbix supports VMware monitoring, which is used to monitor virtual machine statistics, whereas low level

discovery rules are used in order to discover virtual machines and hypervisors [LIEFTING_MON].

Figure 7 [SHOKHIN_MON] illustrates a complete architecture that contains all Zabbix components:

Figure 7: Zabbix components (source [SHOKHIN_MON])

• Zabbix Server: its main goal is to perform remote monitoring of the network itself and its components

and to store configurations, historical and operational data.

• Zabbix Proxy: collects local level data into a buffer that will be forwarded to Zabbix Server.

• Zabbix agent: performs local monitoring of the network devices, by monitoring resources such as hard

drive, memory and CPU statistics. In order to perform resource monitoring, Zabbix agent has to be

locally installed on each device.

• Web Interface/GUI: is launched on the same physical server where Zabbix Server is running.

• Media Server: is responsible for sending alert notification via Email and SMS.

• Database: is used to store configurational and historical data.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 26 de 87

3.1.2.5 Summary

Both Zabbix and Nagios are “out-of-the-box” solutions [HARTUNGA_MON, TRAKADAS_MON] (i.e., they

constitute a complete monitoring solution), while Prometheus and Telegraf are not functional without being

integrated with other tools (in fact, Prometheus and Telegraf can work together in a single architectural

solution):

• Prometheus requires a third-party exporter. An exporter is a tool used to help expose metrics for

Prometheus (similar to agents for Zabbix). Telegraf can be used as an exporter for Prometheus.

• While Zabbix and Nagios have a build-in alerting functionality, to manage alerting with Prometheus it is

necessary to install AlertManager separately.

• A GUI such as Grafana needs to be installed, also separately, unlike Zabbix or Nagios who come with a

functional build-in GUI.

Table 2 displays a comparison between these solutions [TAHEROZADEH_MON].

Table 2: Comparison between Prometheus + Telegraf, Nagios and Zabbix’s functional requirements

Tool Collection
Container

monitoring

Application

monitoring
Data storage

Prometheus+Telegraf Push/Pull Yes Yes InfluxDB

Zabbix Push/Pull Yes Yes
Oracle, MySQL,

PostgreSQL, SQLite

Nagios Pull No No MySQL

In terms of functional requirements, Nagios is clearly outranked. Using Prometheus the solution consists of

deploying the Telegraf agent on every host that requires monitoring (but it is only necessary to have just one

Prometheus running). Since Telegraf uses output plugins, all that is necessary in order to pass metrics to

Prometheus is an outputs.prometheus_client output plugin. Then for reading metrics one can use Telegraf’s

input plugins such as inputs.mem, inputs.cpu, etc. (one big advantage is that Telegraf supports Nagios plugins

as well). While the usage of InfluxDB is optional, both Grafana, Prometheus and Telegraf are compatible with

it; therefore InfluxDB can be used as well (Prometheus is designed for short period data, thus using InfluxDB as

an external storage mechanism is highly recommended).

Prometheus holds two significant advantages when compared with Zabbix: i) Zabbix currently does not support

the feeding of collected metrics from an agent to a Kafka bus, while Prometheus offers this possibility; ii) Zabbix

cannot pull metrics from Collectd, while Prometheus can. Thus, despite the complexity that installing several

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 27 de 87

third-party addons requires, a combination of the tools Prometheus + AlertManager + Telegraf + InfluxDB +

Grafana if well configured can offer a broader scope than Zabbix.

Figure 8 exemplifies a solution based on several tools for a complete monitoring solution focused on:

• Virtual Network Functions (VNF)

• SDN

• Compute virtualization

• Storage virtualization

• Network virtualization

• Data plane

Of the following solutions:

Figure 8: Example of solution for monitoring with diverse tools

A generic architecture for Prometheus/Telegraf monitoring and analytics for these components is illustrated in

Figure 9:

Figure 9: Architecture of monitoring & analytics using Prometheus+Telegraf

• A Telegraf agent is locally installed in each NFV.

• OpenStack offers a module4 called ceilometer.publisher.prometheus that publishes metering data from

OpenStack to Prometheus Pushgateway endpoint.

• OpenDayLight offers a feature5 called odl-infrautils-metrics-prometheus, in which Prometheus is

configured with the URL of ODL (OpenDayLight) nodes, and scrapes metrics from ODL in configurable

regular intervals.

• Collectd is a Unix daemon that can collect statistics from OVS6, DPDK7, Ceph8 and KVM9 and transfer

the data to Prometheus via exporter10.

• Open vSwitch (OVS) can use the DPDK library to significantly improve its performance, which means

that these two are not mutually exclusive.

• Prometheus aggregates the data from the previous mentioned sources, creates a back-up of the data

into an InfluxDB and using an adapter feeds this aggregated data to a Kafka bus11.

• An intelligence layer such as Data collection, analytics, and events (DCAE) from ONAP reads the data

from the Kafka bus, proceeds to process the monitoring data in order to perform analysis on said data

and eventually applies artificial intelligence and machine learning techniques, through microservices

via a tool such as PNDA.

• Druid connects to this intelligence layer for data querying purposes.

• Drools Fusion is the module responsible for adding Complex Event Processing (CEP) capabilities into the

platform; when analysing Figure 12, the CEP can be seen as being the inference engine and the facts

are the contents of the Kafka bus.

But in reality, the architecture for the monitoring component will depend on the chosen orchestration platform,

since most platforms already have their monitoring and analytics solution build-in. For example, the

orchestrator OpenBaton has is integrated with Zabbix for monitoring (see section 3.3.1.3.1). ONAP also has its

own monitoring and analytics solution already integrated (see section 3.3.1.1).

4 https://docs.openstack.org/ceilometer/rocky/api/ceilometer.publisher.prometheus.html
5 https://docs.opendaylight.org/projects/infrautils/en/latest/getting-started-guide/features.html#metrics-prometheus-
implementation
6 https://collectd.org/wiki/index.php/Plugin:OVS_Stats
7 https://collectd.org/wiki/index.php/Plugin:DPDK_Telemetry
8 https://collectd.org/wiki/index.php/Plugin:Ceph
9 https://collectd.org/wiki/index.php/Plugin:virt
10 https://github.com/prometheus/collectd_exporter
11 https://github.com/Telefonica/prometheus-kafka-adapter

https://docs.openstack.org/ceilometer/rocky/api/ceilometer.publisher.prometheus.html
https://docs.opendaylight.org/projects/infrautils/en/latest/getting-started-guide/features.html#metrics-prometheus-implementation
https://docs.opendaylight.org/projects/infrautils/en/latest/getting-started-guide/features.html#metrics-prometheus-implementation
https://collectd.org/wiki/index.php/Plugin:OVS_Stats
https://collectd.org/wiki/index.php/Plugin:DPDK_Telemetry
https://collectd.org/wiki/index.php/Plugin:Ceph
https://collectd.org/wiki/index.php/Plugin:virt
https://github.com/prometheus/collectd_exporter
https://github.com/Telefonica/prometheus-kafka-adapter

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 30 de 87

3.1.3 Analytics solutions

This section details some of the most promising and popular analytics solutions currently available.

3.1.3.1 Druid

Druid is an open-source tool for real-time exploratory analytics on large data sets with sub-second latencies,

that has its own query language and accepts queries as POST requests with a body in the form of a JSON object.

Figure 10 illustrates its architecture [FANGJIN_ANA].

Figure 10: Druid architecture

• Zookeeper: is a centralized service for maintaining configuration information and providing distributed

synchronization. This is where nodes announce their online state and the data they are serving in.

• Real-time nodes: a producer (e.g., a Telegraf output plugin) provides data stream to a Kafka message

bus, from which the real-time node ingests the data, as per illustrated in Figure 11. The advantage of

this solution is that a positional offset that indicates how far a consumer (a real-time node) has read in

an event stream, exists. So, in the event of a recover scenario, a node can reload all persisted indexes

from disk and continue reading events from the last offset it committed.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 31 de 87

Figure 11: Kafka bus serving real-time nodes

• Historical nodes: are used to load blocks of data created by real-time nodes. The instructions to load

and drop segments are sent over Zookeeper and contain information about where the segment is

located in deep storage and how to decompress and process the segment.

• Coordinator nodes: these are used to tell historical nodes to load new data, drop outdated data,

replicate data, and move data to load balance. They run periodically and make decisions by comparing

the actual state of the cluster (this information is obtained through the Zookeeper) with its expected

state. A connection to a MySQL database exists with the purpose of loading additional operational

parameters and configurations if needed.

• Broker nodes: they act as query routers to historical and real-time nodes.

3.1.3.2 Drools

When a request reaches the decision centre of a telecommunication system, the decision maker is forced to

select a choice that invariably, can output different outcomes. Not only analysing the pros and cons of each

possible outcome is time consuming, but when in current telecommunications systems these requests appear

in rapid and large amounts, the need for decision automation becomes imperative.

Decision automation in simple terms, refers to the coupling of an action with a condition or policy, i.e., when a

certain condition or policy is met, then a specific action will be triggered automatically without human manual

intervention. This is what is referred to as rules.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 32 de 87

Drools is an open-source rules engine for applying conditional actions (if/then rules) to data. A rule’s basic

structure is as follows [SALATINO_ANA]:

rule "name"

when

 (Conditions)

then

 (Actions/Consequence)

end

One can see these conditions as being essentially filters that exclude the data which does not meet a defined

criterion. Once this so-called filter is applied, an action is scheduled to be executed. An important characteristic

of these rules is that they are based on the declarative programming paradigm, which means that the placement

of the rule inside the code is irrelevant when determining the flow control of the code.

The core component of the Drools rules engine is the inference mechanism (also known as inference engine),

which is used to make an assessment of the current state of the environment in order to identify the set of rules

that constitute good candidates given the environment’s state. In other words, the inference mechanism

matches rules against facts or data to infer conclusions that result in new facts or in actions. The Drools

inference mechanism uses an improved Rete algorithm for pattern matching, adapted for object -oriented

systems, and for Java in particular. Figure 12 [LEY_ANA] illustrates the main components of a rule’s engine:

Figure 12: Rule’s engine (source [LEY_ANA])

Rules are stored in the production memory, while facts are maintained in the working memory. During a session

no rules can be added or removed from the production memory, while facts on the other hand, can be added,

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 33 de 87

removed or changed in the working memory, by executing rules. Once a change occurs in the working memory,

the inference engine is triggered and established which rules are valid for the given facts. In the event that more

than one rule is valid, their execution is managed by the Agenda, using a conflict resolution strategy. When a

selected rule has been executed, and one or more changes were done in the working memory, the inference

engine goes to work again, adapting the agenda and executing the rule that has now reached the highest

priority. This iterative process continues until the agenda is empty. Then the analysis session terminates, and

results can be queried from the working memory.

3.1.3.3 Kapacitor

The Kapacitor is also an element of the TICK stack promoted by Influx [YTSENG_RTMS5NCP]. In particular,

Kapacitor is considered as an open-source data processing framework to create alerts, to run Extract Transform

and Load (ETL) jobs and to detect anomalies.

Kapacitor is able to support user defined functions to process alerts, analyse metrics for patterns, compute

statistical anomalies and perform actions on such alerts [DHIRAJ_PDAUPOST]. The actions can be integrated

with solutions like HipChat, Opsgenie, Alerta, Sensu, Slack and others to allow, for instance, the notification

when a certain value is below a defined threshold.

Kapacitor can be instrumented via a graphical user interface, or via an API, where programs can configure the

analysis process in Kapacitor and the specific actions upon certain values (e.g., temperature exceeds 2ºC of

predefined threshold in the previous 5minutes). The short comes of Kapacitor are mainly related to the

streaming of data that heavily relies on InfluxDB and has no support for advanced analysis mechanisms that can

be empowered by Machine Learning techniques. In addition, some authors point scalability issues in the TICK

stack (e.g., no clustering support) [SKJENSEN_TSMS], which may impact analysis of high volumes of data. In

addition, Kapacitor does not hold features to be classified as an Online Analytical Processing (OLAP) system, as

Druid.

3.1.3.4 PNDA

PNDA (Panda) is an open-source Platform for Network Data Analytics, which aggregates data from multiple

sources on a network including, real time performance indicators, logs, network telemetry, and other useful

metrics and works in combination with Apache Spark in order analyse the data to find useful patterns

[PNDA_GUIDE].

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 34 de 87

PNDA delivers processed data to downstream applications, where it can then be evaluated. It does this using

Apache’s Kafka and Zookeeper applications to distribute high velocity data. It performs the following procedures

with its respective embedded technologies:

• Data entry by a multitude of options, e.g., Logstash, OpenDaylight, Bulk Ingest, SNMP, Telemetry, etc.

• Data distribution by Apache Kafka and Zookeeper.

• High-speed stream processing with Spark Streaming.

• High volume batch processing with Spark.

• Free-form data exploration with Jupyter.

• Structured consultation on big data with Impala.

• Time series manipulation with OpenTSDB and Grafana.

A standard installation includes the following:

• SaltStack: is an open source Python-based software for event-driven IT automation, remote task

execution and configuration management.

• OpenStack Heat templates: Heat implements an orchestration mechanism to activate various

composite cloud applications based on templates in the form of text files that can be treated as code.

• AWS CFN templates: AWS CloudFormation offers a common language for modeling and provisioning

resources from AWS and third-party applications in a cloud environment.

• Apache Kafka: it is literally the "front door" for the entry of data flows originated by the network

equipment.

• Bulk Ingest: acting as an alternative to Kafka to accommodate existing data migration scenarios for

PNDA.

• Zookeeper for Kafka: is used by Kafka for discovery and search requests from brokers regarding the

partitions you want to consume.

• JMX Proxy: used for, among other things in PNDA, the exposure of all MBean attributes available in a

given JVM through a simple HTTP request.

• Apache Impala: acting as a parallel execution mechanism for SQL queries with low latency access and

interactive data exploration in HDFS and HBase. Impala allows data to be stored in raw format, with

aggregation performed at the time of consultation, without the need for initial data aggregation.

• CMAK (aka "Kafka Manager"): as a Kafka cluster management tool.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 35 de 87

• ELK (Logserver) Elasticsearch: one of the components of the log architecture employed by PNDA.

• Logstash: one of the components of the log architecture employed by PNDA, used to receive data from

numerous sources, transformation and data sharing.

• Kibana: one of the components of the log architecture employed by PNDA, acting as an Elasticsearch

data visualization plugin.

• Jupyter Hub and Jupyter Notebook: acts as an application that allows you to create and share

documents that contain active code, equations, visualizations and explanatory text. In PNDA, it supports

the exploration and presentation of data from HDFS and HBase.

• OpenTSDB: acts as a scalable time series database that allows you to store and supply large amounts of

time series data, without losing granularity.

• Grafana: acts like a graph and panel builder to visualize PNDA time series metrics.

• Anaconda: Anaconda is a free and open source distribution of Python and R programming languages

for scientific computing. Used for several PNDA functions.

• Consul.io: for managing endpoints and discovering services.

• Apache Flink: acts as a structure and a distributed processing mechanism for stateful calculations on

unlimited and limited data flows. Flink is designed to perform in all common cluster environments,

perform calculations at memory speed and at any scale.

• Apache Knox: acts as an application gateway to interact with the REST APIs and UIs of Apache Hadoop

deployments, providing a single access point for all REST and HTTP interactions with Apache Hadoop

clusters.

PNDA in fact proposes to be a scalable and open big data platform, with the purpose of supporting operational

and business intelligence analysis for networks and services.

3.1.3.5 Pinot

Pinot is a real-time distributed OLAP datastore [JEAN_PINOT] and is an incubator apache project12. Pinot as an

apache project, has been designed to answer OLAP queries with low latency being able to ingest data in near

real-time from streaming data-sources, and has also been designed for high performance, to support a high

number of queries per second [YFU_RTDIUBER].

12 https://pinot.apache.org/

https://pinot.apache.org/

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 36 de 87

Pinot is employed by enterprises due to the scalability support and the capability to enable near real-time OLAP

services and distributed OLAP data store. The internal architecture of Pinot is identical to Druid, but introduces

some optimizations regarding the data structures, such as compression of indices to lower the data footprint

and to support faster query execution. The architecture of Pinot is illustrated in Figure 13, highlighting the main

components, which include controllers, brokers, servers and minions.

Figure 13: Architecture of Pinot (source [JEAN_PINOT])

The cluster management of Pinot relies on the Apache Helix solution. The server component hosts segments

and performs the processing on segments, which can correspond to a UNIX directory. The controller component

is responsible for maintaining the mapping between segments and servers. On the other side, the brokers

receive the incoming queries and route them to the appropriate server instances and aggregate the results

from multiple servers.

3.1.3.6 ClickHouse

The ClickHouse is an OLAP database management system, developed by a Yandex company and employed by

Cloudflare for HTTP and DNS analytics [ROMAN_COSOLAP]. ClickHouse achieves performance by supporting

ingestion of data streams (e.g., from Kafka) and by adopting column stores.

The architecture of ClickHouse differs from Pinot and Druid, in the sense that ClickHouse does not support the

concept of segments, and there is not a true separation between storage and processing. For instance, a

ClickHouse node performs query processing and persistence of data. While such an approach can provide

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 37 de 87

benefits in terms of deployment (no need for dedicated data management servers and no need to process data

in segments), there can be issues in partitioning the data of big tables between several nodes, as the queries

might need to be processed by a high number of nodes. In addition, the growth of the cluster might need to be

adjusted in order to weigh the partitioning of data between nodes.

ClickHouse is more aligned with traditional database systems, and its simplicity in terms of deployment can be

beneficial in some scenarios. For instance, a single server might be enough to process the OLAP queries

[ROMAN_COSOLAP, YFU_RTDIUBER].

3.1.3.7 Non open source analytical solutions

Even though this project relies essentially on open-source tools, it is worth to mention that some valuable non-

open source analytical solutions exist in the market. Three of such solutions are Microsoft PowerBI, IBM Cognos

and Google different data tools.

Microsoft Power BI is a business intelligence software for data collection, analysis, and reporting that utilizes

Microsoft artificial intelligence (AI) technology to predict trends and future performance, as well as to diagnose

performance issues. It offers seamless Excel integration for spreadsheet application.

IBM Cognos is an AI-powered platform that can feed in data from third-party tools like Google Analytics. It offers

custom dashboards, data exploration using conversational language, detection of anomalies in the data through

pattern detection techniques and trend forecast using artificial intelligence.

Google has a whole suite of different services that can be bonded together, such as Google analytics (tracks and

reports traffic and associated data), Google data studio (a cloud-based visualization tool with an interactive

dashboard) and Google BigQuery (as the name says, to query large chunks of data).

3.1.3.8 Summary [ALTRAN, with UC collab]

Table 3 displays a comparison between the tools described in this section. It is important to note that some of

the solutions presented in this table do not provide a full set of features for monitoring or analytics, and in some

cases, they complement each other. Such as is the case of Druids and Drools for example.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 38 de 87

Table 3: Monitoring solutions

Approach Advantages (++) D isadvantages (--)

Druid ● Permits the execution of data queries
with extremely low latency

● Its architecture is not straightforward and
easy to deploy

Drools ● It is based on declarative programming
● Rules are easy to set up

● Documentation is difficult to go through

PNDA ● ONAP is trying to make it a default part
of their framework, so support would
increase and there would be no need
for extra tool configurations

● Extremely complete: a standard
installation comes with a multitude of
different tools

● No activity from its developers in the last
two years (could be discontinued)

Kapacitor ● Easier deployment
● Provides APIs to allow the definition of

rules by other services and applications

● Requires InfluxDB time series database
● May have scalability issues with high

volumes of data

Pinot ● Modular architecture
● Support for high volumes of Big data
● Efficient mechanisms for clustering and

distribution of data (segment approach)
● Designed to reduce OLAP queries

● In simple deployments adds complexity

ClickHouse ● Supports scalability
● Facilitates deployments

● More oriented to database systems, which
may lead to issues with high volumes of
data

● Cluster management requires manual
intervention

3.2 Resource Allocation mechanisms

This section presents to perform resource allocation in diverse contexts, networks.

3.2.1 Introduction

Fog computing brings challenges at multiple levels. Looking from a broader perspective, one of the first

challenging issues is the modelling of the orchestration component that needs to be able to perform the

deployment of the Cloudlets [CHEN_CLOUDLETARCH] and handle tasks inside the Cloud/Fog ecosystem.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 39 de 87

The combination of IoT, Fog, and Cloud embraces a complex scenario where in some cases it is not suitable to

migrate or apply well-known solutions or mechanisms from other domains or paradigms. Two particular aspects

to take into consideration are: (i) Resource Management, which requires the design and development of

mechanisms that handle tasks such as Scheduling, Path Computation, Discovery and Allocation, and

Interoperability; and (ii) Performance that deals with Latency, Resilience, and Prediction and Optimization from

the gauges, mechanisms, and algorithms point of view [VELASQUEZ_CHALL].

Regarding the resource allocations approach to implement in the Cloud/Fog ecosystem, a key factor to consider

is the trade-off between different (sometimes competing) optimization parameters. For instance, it could be

required to minimize the energy consumption while also minimizing the latency. These represent a multi -

objective optimization problem that renders the allocation process into a non-trivial problem.

These new challenges require novel solutions tailored for the Fog landscape. Some architectures aimed at the

orchestration of Fog environments are presented below.

3.2.2 Architectures for resource allocation

The Fog needs to support the orchestration of applications and services on demand, with adaptability, while

providing flexible performance. In practice, traditional service orchestration approaches that were applied to

Cloud services are not suitable for the large scale and dynamism of Fog services, since they cannot effectively

treat the prominent characteristics of the Fog’s distributed infrastructure. The OpenFog consortium defined a

set of guidelines to orchestrate the Fog, which can be done in a centralized or distributed manner. This section

presents the OpenFog consortium architecture, a description of Fog orchestration approaches, and a set of Fog

orchestration architectures that tackle the Fog resource allocation problem.

3.2.2.1 OpenFog Consortium Reference Architecture (guidelines)

The OpenFog Consortium has documented a reference architecture [OPENFOG_RAFC] and clarified the

definition of Fog Computing. The OpenFog Reference Architecture (OpenFog RA) was conceived to enable Fog -

Cloud and Fog-Fog interfaces following the SCALE approach:

● Security -- using the security by design approach to ensure safe and trusted transactions;

● Cognition -- enabling awareness of client-centric objectives to achieve autonomy;

● Agility -- supporting rapid innovation and affordable scaling under a standard infrastructure;

● Latency -- providing real-time time processing, as well as, cyber-physical system control; and

● Efficiency -- managing dynamic pooling of local and remote resources to enhance the QoS of end-users.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 40 de 87

The SCALE approach allows present Fog computing as a paradigm to distribute computing, storage, control, and

network functions closer to users, creating a Cloud-to-object continuum. Fog computing contributes to achieve

resilience/reliability, as per the definition of the International Telecommunications Union (ITU) body, where

reliability is considered as the capability to transmit a certain amount of traffic (i.e., 32 bytes), in a pre-

determined time duration (1ms) with high success probability (i.e., above 1-10-5) [ITU-R_M.2410].

Figure 14: OpenFog RA high-level description (source [OPENFOG_RAFC])

As illustrated in Figure 14, the OpenFog RA includes diverse perspectives:

● Performance - with concerns for low latency, time-critical computing, time-sensitive networking;

● Security - with concerns for end-to-end security, including data integrity mechanisms to address

intentional and unintentional corruption;

● Manageability - regarding development activities like DevOps;

● Data Analytics and Control - Data needs to be localized in each Fog node to promote autonomous nodes

and include mechanisms for analytics and control; and

● IT Business & Cross Fog Applications - includes the business logic and applications.

The reference architecture puts some emphasis on the scalability aspect since orchestration and allocation of

resources need to be managed in the multiple levels of the Fog architecture. For instance, depending on the

scenario, the architecture can include Fog nodes (with computing, storage, networking capabilities) located in

the Cloud, as well as close to the user, where sensors, actuators are deployed. The OpenFog RA ha s been used

as inspiration for more refined and niche solutions that try to couple a set of particular issues, such as, how to

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 41 de 87

combine centralized and distributed approaches for the management and orchestration for the Cloud-to-object

continuum. In the following subsections, this approach is discussed.

3.2.2.2 Centralized vs. Distributed Approaches

Different approaches can be followed for resource management. A centralized approach is usually denoted

orchestration, where a single centralized executable process coordinates the interactions among applications

and services, managing the resources of the communication infrastructure [JIANG_ORCH]. This allows having a

unified vision to apply general optimizations to the entire system. However, the response time for managing

tasks is increased when using this approach, besides generating the typical problem of centralized solutions, a

single point of failure.

On the other hand, a distributed approach is known as choreography, which is enabled by the exchange of

information, cooperation, and agreements between two or more endpoints [BITTENCOURT_CHOREO],

increasing the complexity of the coordination tasks. Common solutions are based on a centralized approach for

orchestration with more recent efforts towards a choreography-oriented design. Some proposals even explore

the use of a hybrid approach [VELASQUEZ_SORTS], using orchestration in the upper layers (Cloud) to provide a

global vision of the system allowing to apply optimizations to the entire ecosystem, while using choreography

in the lower layers to provide dynamism and reduce response time.

Particularly, the OpenFog Reference architecture [OPENFOG_RAFC] proposes a distributed approach for

resource allocation and orchestration to avoid relying on a central entity (single point of failure) and to decrease

latency of services. The OpenFog reference architecture aims at autonomous orchestration and management

where fog nodes located at the edge are also able to perform actions like the instantiation of services, routing

data flow, according to policies and programmability.

3.2.2.3 Cloud/Fog Orchestrator Architectures

The Cloud-to-Object continuum requires a well-constructed Orchestrator able to deal with the entire

management function for this complex environment, and properly handle all the challenges present in this

landscape.

The OpenFog RA provides guidelines for the features a proper Cloud/Fog ecosystem should offer; however, it

does not include instructions about the management or orchestration of the scenario and the actors playing

key roles in it (e.g., devices, services, and applications). Particularly, the Cloud/Fog continuum can be supported

by distributed or hybrid approaches for resource allocation and orchestration enabling synchronized

management and orchestration of resources at Cloud and Fog levels. To better understand how to tackle the

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 42 de 87

orchestration challenges in the Cloud/Fog ecosystem, a subset of the research focused on empowering an end-

to-end orchestration following centralized, distributed, or hybrid approaches are outlined below.

3.2.2.3.1 SORTS

A hybrid approach for service orchestration in the Fog is used in the Supporting the Orchestration of Resilient

and Trustworthy Fog Services (SORTS) project [VELASQUEZ_SORTS]. The infrastructure is divided into levels that

are managed using both choreography and orchestration, according to the needs of the different levels. The

architecture allows the use of different Orchestrator instances, corresponding to the optimization goals of

various scenarios.

Figure 15: SORTS Logical Infrastructure (source [VELASQUEZ_SORTS])

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 43 de 87

Figure 15 shows the logical infrastructure, which is divided into three levels: (1) the IoT, (2) the Fog, and (3) the

Cloud. At the bottom levels, a choreography approach is used, meaning that the devices cooperate to manage

purposes. This allows quicker response times in case of changes in the topology (e.g., shift from one Virtual

Cluster to the next) thus increasing the resilience of the system.

Orchestration is used at the Cloud level (top level of the infrastructure). The hybrid approach (choreography

plus orchestration) facilitates the achievement of a higher independence for the lower levels, granting them

more dynamism and quicker response time in case of failures; at the same time, at the upper levels permits

maintaining a global view that allows the implementation of optimization tasks involving the overall system.

The architecture presented in Figure 16 was designed to manage the resources and communication in the

scenario previously described. Overlapped instances of the architecture are to be replicated at different Fog

Instances and Virtual Clusters allowing the use of the distributed choreography mechanisms; and also at the

Cloud level, where a single instance is deployed for global Orchestration.

Figure 16: SORTS Orchestrator components (source [VELASQUEZ_SORTS])

The Orchestrator allows the communication of different instances (Communication Manager), the monitoring

of resource usage (Resource Manager), the lookup of available services (Service Discovery), and different

authentication and privacy mechanisms (Security Manager). It is also possible to oversee the activities of the

system (Status Monitor), schedule processes (Planner Mechanisms), and improve the performance of the

system by applying optimization mechanisms at the upper levels.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 44 de 87

3.2.2.3.2 SOAFI

Another Orchestration architecture reference comes from Service Orchestrator Architecture for Fog -enable

Infrastructure (SOAFI). In the architecture, depicted in Figure 17, two main elements, organized on a

client/server model can be identified as the Orchestrator and the Fog Orchestration Agents.

Figure 17: Service Orchestrator Architecture - SOAFI (source [BRITO_SOAFI])

The Fog Orchestrator is a centralized entity that organizes Fog nodes into Logical Infrastructures, allowing the

use of a hierarchy of objectives and capacities within the framework. The Orchestrator is in charge of the

infrastructure management, orchestration, security, and monitoring.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 45 de 87

The Fog Orchestration Agents are distributed in clusters in the Fog layer (usually known as Cloudlets), and have

the responsibility of allocation within the cluster, discovery of resources, local optimization, and interoperability

through standardized communication (e.g., using M2M communication protocols).

3.2.2.3.3 ETSI IGS MEC

The ETSI Industry Specification Group (ISG) has outlined an architecture to enable Mobile Edge Computing

(MEC) [ETSIMEC_FRA], as outlined in Figure 18.

Figure 18: ETSI MEC Reference Architecture (source [ETSIMEC_FRA])

The MEC reference architecture includes reference points between the diverse entities considered, such

reference points are considered in three groups:

• Mp - reference points regarding MEC platform functionality, for instance, between MEC applications

and MEC services;

• Mm - reference points regarding Management, for instance, between the MEC host and the platform

manager or edge orchestrator; and

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 46 de 87

• Mx - reference points regarding connection with external entities, such as applications running on the

edge device.

The entities considered in the MEC architecture are:

• MEC host - an entity that contains a MEC platform and virtualization infrastructure to provide

computing, storage and network resources to run MEC applications, considered in the MEC host level;

• MEC platform - set of essential functionalities required to run MEC applications or to run services,

considered in the MEC host level;

• MEC applications - applications that implement the desired functionalities, considered in the MEC host

level; and

• Multi-access edge orchestrator - a core component of the MEC system, considered in the MEC system

level.

The virtualization infrastructure in the MEC host includes a data plane responsible for executing traffic rules,

route traffic between applications, services, DNS server(s) and between intra/inter networks. The MEC platform

assures a set of functionalities that include the management of an environment to allow MEC applications to

discover services, to manage traffic rules, configuration for the data plane of the virtualization infrastructure of

the host, to provide access to persistent storage, among other functionalities. MEC applications are assumed

to run as Virtual Machines (VMs), which are able to consume and provide MEC services.

From a MEC system-level management perspective the Multi-access edge orchestrator holds multiple

functionalities like maintaining an overall view of deployed MEC hosts, resources and services available. In

addition, the orchestrator is also responsible for assuring that MEC applications comply with policies (e.g.,

packages are authentic). In addition, the orchestrator also selects the most appropriate MEC host to instantiate

an application considering latency, availability of resources, and available services. The MEC architecture also

has connections with NFV.

3.2.2.3.4 CONCERT

A Cloud-based architecture is proposed by Liu et al. [LIU_CONCERT]. In CONCERT, the control and data planes

are decoupled, and the services are deployed at the edge of the network, closer to end-users. The data plane

deals with different physical resources, which are orchestrated at the control plane. The architecture is depicted

in Figure 19.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 47 de 87

Figure 19: CONCERT Architecture (source [LIU_CONCERT])

At the bottom of Figure 19, there is the Data Plane, which encompasses the physical resources which are

managed in an upper decoupled control plane by the Conductor Entity. The conductor is in charge of the

orchestration and virtualization of the data plane resources. Virtualized resources are defined in the upper

layer. Radio Interfacing Equipments (RIE), SDN switches, and computational resources are included in the data

plane.

The conductor is the main component of the Control Plane, and its role is to orchestrate and export physical

resources to the upper layers, performing a variety of tasks via different mechanisms, like Location-Aware

Computing Management (LCM), which schedules computational tasks to computational resources. The

conductor must collect data about deadlines, resource demands, location, and result destination of the

applications and services, to feed the proper mechanisms and algorithms with the needed information to

successfully complete their tasks.

At the top-level services are deployed following a software-defined approach, using virtualization and

orchestration performed by the Conductor in the control plane.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 48 de 87

3.2.2.4 Summary

Table 4 provides a summary of the resource allocation solutions.

Table 4: Resource allocation solutions

Approach Advantages (++) D isadvantages (--)

SORTS ● Use of hybrid approach
● Architecture details for the orchestrator
● Multiple instances allow to tailor the

orchestrator according to different needs

● Does not cover interoperability support
for heterogeneous devices

SOAFI ● Use of Hybrid approach
● Architecture details provided for the

orchestrator and the agents

● Does not provide optimization guidelines
to deal with latency or resilience

● Does not cover authentication aspects
● Does not cover interoperability support

for heterogeneous devices

ETSI IGS

MEC

● Support of a well-known standardization
organization

● Division of data and control planes
● Supports connections with NFV

● Centralized approach
● Does not provide optimization guidelines

to deal with latency or resilience
● Does not support security and privacy

aspects

CONCERT ● Division of data and control planes ● Centralized approach
● Lack of details for the orchestrator
● Does not cover security or authentication

aspects

3.2.3 Optimization approaches

Optimization plays a crucial role in several fields and engineering is not an exception. Its purpose is to find the

best solution for the established objective. Figure 20 illustrates how the optimization approaches can be

employed in the Orchestration/Virtualization platforms for optimized resource management , considering

multiple data sources (e.g., monitoring solutions), the policies for services and resource management . The

optimization approaches can rely on distinct mechanisms, as described in this sub-section. Section 3.2.4

exemplifies the application of the optimization approaches in scenarios with similar requirements as those of

OREOS.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 49 de 87

Figure 20: Example of optimization approaches integration, considering policies and multiple data sources

(source [KAPADIA_ORC])

The optimization approach is divided into two main phases: the design model and the optimization mechanism.

The first one is devoted to the optimization model design. Here it is identified the decision variables that define

the objective function and the relations between them to get solutions that meet the requirements of the

problem. The second phase is devoted to the optimization mechanisms to deal with the model to obtain the

optimal solution.

Usually, the optimization problems that appear in real-life situations are hard to solve. Thus, it is usually to

divide it into several sub-problems to be manageable and solved following a divide-and-conquer strategy. In

this aspect the optimization approach can include an additional phase to support the divide-and-conquer

strategy. The graph partition approach uses a network structure to describe the problem and is an example of

it. For example, using Graph Partitions, instead of trying to find a global optimal solution it is possible to focus

on finding a local optimal in each partition and in later phases try to figure out how to combine them.

3.2.3.1 Design Models

The design of a good model is the key to the success of the optimization approach. To this end, it is necessary

to identify the decision variables (values we want to control in the optimization process) and parameters (values

previously fixed in the definition of the model) with which it is possible to define the objective function and

establish the constraints that characterize all the admissible solutions of the problem.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 50 de 87

However, the more detailed the model is, the greater the number of variables and constraints it includes. Thus,

the problem becomes more challenging to solve and may even be computationally demanding. In general, we

have to establish a trade-off between these two aspects. Thus, we initially consider a more simplified model of

the real situation, with the essential characteristics only. If the solution to this problem does not satisfy all the

requirements that have been neglected, the model is redefined to overcome these shortcomings. In this way,

the model is improved until it reaches a satisfactory solution for the real application in question. One aspect to

take into account when defining the model is the number and type of variables (continuous or discrete) as well

as the number of constraints since they have a significant impact on the time required to solve the problem.

In problems with continuous variables, algorithms that use some information about the derivatives of the

functions (if it exists) can be used, as is the case of line search methods (maximum descent, Newton, Quasi-

Newton) and trust-region methods. If that information is not available, methods without derivatives can be

used, as is the case of the direct search method or the Nelder-Mead method. This kind of methods usually

guarantees convergence to a stationary point that can be only a local minimum of the objective function. Thus,

the study of convexity (objective function and restrictions) has an essential role in the characterization of the

solution found. In this case, it could be possible to guarantee that it corresponds to the global minimum of the

problem.

The problems with discrete variables have a combinatorial nature, so the number of admissible solutions (in

general, finite) explodes quickly with the size of the problem. Thus, it is not possible to evaluate all solutions to

find the best one. Several algorithms are dealing efficiently with some of these problems, such as Branch-and-

Bound methods and dynamic programming.

3.2.3.1.1 Single and Multiple Objective

Problems in the engineering field that frequently arise in real applications are multi-objective in nature since

several criteria need to be optimized simultaneously. This approach makes it possible to determine a set of

solutions that form the so-called Pareto front, that is, solutions for which it is impossible to improve one of the

criteria without worsening one of the others.

In general, the objectives under study are conflicting. Consequently, the Pareto front has a large set of solutions

allowing the decision-maker to choose the most appropriate for the application in question. However, the

number of existing Pareto optimal solutions can be so large that it makes the complete computation of the

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 51 de 87

Pareto front too expensive. One approach to deal with this situation is to join all criteria into a single objective

function (called utility function), transforming it into a single-objective problem and, therefore, easier to solve.

A utility function frequently used in the literature is the weighted sum of the criteria (also known as “multi-

attribute utility theory”). It is possible to show that an optimal solution to this problem is always a Pareto optimal

solution. However, Pareto solutions may not correspond to the optimal solution of the mono-objective problem

regardless of the weights used in the utility function.

3.2.3.1.2 Linear Programming

As mentioned before, designing the model for a given real application should start with a simple one. In this

context, linear problems obviously stand out. In problems associated with telecommunications, often emerges

network structures. Thus, problems such as the maximum flow, the flow (with a given value) with minimum

cost, the minimum spanning tree, location problems like the vertex p-center and the p-median, the

transportation problem and the shortest path problem are good initial candidates. In these cases, there are

efficient algorithms to deal with them.

Additionally, the model can be defined as a general integer linear program or a mixed-integer linear program,

and Branch-and-Bound is usually an efficient method to solve it. If integer variables are not considered, the

Simplex method and/or the interior method can be used to solve it.

3.2.3.2 Optimization Mechanisms

Once the model is described, we must choose or propose an algorithm to solve it to obtain a satisfactory

solution to the problem at hand. This solution may be the best among all admissible solutions, and, in this case,

we need an exact algorithm to get it. These kinds of algorithms tend to converge to local minimizers, being

necessary to study the properties of the problem (for example, check convexity) to ensure that this solution is

global.

On the other hand, it is possible to stop in advance the search for the exact solution obtaining only a good

approximation to it. The advantage of this procedure is the decrease in computational effort without too much

loss in the quality of that solution. Other mechanisms, such as heuristics, allow obtaining good solutions

involving little computational effort and will also be considered in this project.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 52 de 87

3.2.3.2.1 Exact Methods

Exact algorithms seek to determine the best solution among all possible admissible solutions. Obviously, this

search cannot be done as a brute force task since there are infinite solutions in continuous problems, while in

discrete ones, the number of solutions is finite but very high.

In continuous problems, the study of properties such as differentiability and convexity allows one to choose

search directions, such as the steepest descent direction or Newton's direction, which generate a sequence of

approximations converging to an optimal solution of the problem. These methods can be combined with

quadratic penalty methods, quadratic sequential programming method, augmented Lagrangian method,

barrier method, interior points method. To guarantee the solution satisfies all the constraints of the model.

However, in real problems, the objective function is often obtained by simulation or is affected by some noise.

Then, it is not possible to obtain an explicit expression for the function. In this case, it is impossible to obtain

the derivatives, and their approximations are of low quality due to noise.

In discrete problems, it is possible to reduce the search area when they verify the optimality principle, which

indicates that every optimal solution is formed by optimal sub-solutions. Thus, if we find a sub-solution that is

not optimal during the search, the algorithm does not proceed in that direction. An example of an algorithm

based on this principle is dynamic programming. If the problem does not check the optimality principle, the

Branch-and-Bound algorithm can be used, for example.

Given the complexity of models in real situations, determining the exact solution is often a task that consumes

great computational effort, so these algorithms have a strong limitation in the size of the problem they can

solve.

3.2.3.2.2 Heuristics Methods

Heuristics are algorithms that allow determining a solution of reasonable quality with litt le computational effort.

In general, they can be divided into two large groups: constructive and exploratory heuristics. In the first one,

it is intended to build only one solution, and the heuristic defines rules for assigning the value of each variable.

In the second, the heuristic starts from a set of solutions and tries to improve it at each iteration, returning at

the end the best solution obtained.

Constructive heuristics are usually made in a tailor-made algorithmic environment, based on some properties

of the problem in question. Thus, they can take advantage of these characteristics, but it becomes challenging

to generalize to other situations. Another way to define heuristics of this type is to imitate the pattern of a good

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 53 de 87

solution obtained by some other method. For example, in the first step, optimal solutions are obtained in small

problems and then try to imitate that behaviour in larger ones.

The exploratory heuristics are more general and, therefore, easier to apply. They start from a set of initial

solutions (which can be random) and improve on it. They can improve by replicating some existing behaviour

in nature, as is the case of evolutionary algorithms (such as genetic algorithms, simulated annealing, ant colony,

etc.). Other techniques included in this group are local search algorithms (which explore the neighbourhood of

a particular solution) and math-heuristics, where exact algorithms can solve part of the problem or a relaxation.

Based on this solution, the algorithm built a good answer to the original problem. Finally, exact algorithms that

end before reaching the optimality stop conditions can also be included in this group.

3.2.3.3 Graph Partition

Graph theory is frequently used to tackle a range of engineering and computer science applications. In

particular, a graph can be used to represent discrete objects and the relationship among them, such as a

communication network infrastructure. The communication nodes can be viewed as the vertices of the graph

while the communication links are the edges connecting the vertices. Graph partition can be used to divide the

topology into clusters or communities for different purposes.

There are several methods to partition graphs including Girvan and Newman [NEWMAN_GP], which

progressively removes edges from the original graph to identify the communities on it. The edges removed are

those with the highest betweenness centrality at each step, thus tightly knit communities are created as a result.

Another method is the Fluid Communities method [PARES_GP], that creates communities by mimicking the

behaviour of several fluids, expanding and pushing one another in the graph until an equilibrium is found,

generating communities balanced in size. The PageRank mechanism [PAGE_GP] can also be used to create

communities, which ranks the nodes via probability propagation according to a metric (e.g., propagation delay).

The resulting communities group nodes by a given characteristic. Graph partition mechanisms have proven to

be useful to deal with load balancing by building communities in the network topology to share the load among

the nodes inside each community.

3.2.3.4 Machine Learning

Over the last decade Machine Learning (ML) became ubiquitous in many areas of research, fuelled by the large

quantities of information gathered by researchers, practitioners and industries, and by the growth in the

processing capabilities of computer systems.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 54 de 87

Without noticing, we interact with ML approaches daily that give us access to recommendation systems;

translation and speech recognition tools; email categorisation, spam and malware detection; abnormal

behaviour detection (e.g., fraudulent transactions, or video surveillance); credit risk assessment; plagiarism

detection; customer behaviour analysis and segmentation; and autonomous driving [KRIZHEVSKY_ML,

FARABET_ML, ESTEVA_ML, HOCHREITER_ML, LOPEZ_ML]. In what concerns the application of ML to

autonomous driving, the majority of the literature is focused on multi-modal object detection and semantic

segmentation [FENG_ML].

However, another important challenge where ML is playing an important role in autonomous driving is resource

allocation in 5G networks. In fact, it has been shown that the most recent advances in Deep Learning have

achieved remarkable results in resource allocation when compared with conventional methods [LEE_ML,

WANG_ML, NASIR_ML]. Given the demands of vehicular networks, and the challenges in managing slicing in 5G

networks, [TAYYABA_ML] proposes a ML model to optimise resource allocation taking into account the

demands and dynamics of the network. The study evaluates different Deep Neural network architectures such

as Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), and shows that LSTMs are able

to obtain impressive results. With the large quantities of data that are being generated, traffic prediction using

ML is not only becoming a possibility, but a reality. In fact, LSTMs have attained remarkable results within this

context. In [WANG_ML_SPATIO] the authors propose a model using two ML learning models to capture the

spatio-temporal characteristics of network traffic. The spatial dependence is represented using an

AutoEncoder, and the temporal dependence is modelled using LSTMs.

Reinforcement Learning is a ML approach that has been used with success in network slicing [LI_ML_SLICE] and

multitenant cross-slice resource orchestration [CHEN_ML]. Another successful application of the ML in resource

allocation is presented in [LI_ML]. In this study, the authors present an approach using a Reinforcement

Learning algorithm combined with a LSTM. In concrete the proposal uses the Actor-Critic Deep Reinforcement

Learning Algorithm, where the state is the service demands, and the actions are the allocated resources. Since

user mobility hinders the ability of the algorithm to perceive the environment, the authors include a LSTM

model to track and predict user mobility.

As the works described above show, ML is an asset when dealing with resource allocation in vehicular networks.

However, there are some open issues and challenges that one has to deal with when using these types of

models [LIANG_ML]. The first and foremost is related to how to select the most appropriate architecture and/

or parameter settings for a Deep Learning model. We know that there are no free lunches, and as such no single

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 55 de 87

model configuration will work well in all the tasks. As an example, Convolution Neural Networks (CNNs) exhibit

very good results in computer vision tasks, whilst LSTMs are more tailored to sequential data, such as time-

series. Since resource allocation has a specific set of characteristics, it is important to take them into account

when choosing/designing a ML model. Another issue is related to the bridg ing between the development and

training of the models and its implementation in the real world. Usually, these models are designed and tested

in a controlled environment based on simulations. However, building a simulator that is able to include all the

characteristics of the real world is difficult, if not impossible. Finally, and when using Reinforcement Learning

models, one has to take into account several issues, namely the nonstationarity and partial observability of the

environment.

3.2.3.5 Summary

Table 5 summarizes the diverse optimization approaches.

Table 5: Optimization approaches summary

Approach Advantages (++) Disadvantages (--)

Design

models

● Allow you to obtain a theoretical
model to run simulations on

● Allow to perform the sensitivity
analysis to some parameters of the
problem

● Simplified models for the real case
● Mismatch between the performance of the

solution in the theoretical model and the
real case.

Optimization ● allow finding the solution with the
best performance in the theoretical
model

● heuristics allow obtaining solutions
close to optimality without great
computational effort

● the most realistic theoretical models are
difficult to solve, requiring a high
computational effort which forces to
consider only small size problems

● do not determine the optimal solution and
it is difficult to have an approximation of the
optimal gap

Graph

partition

● Can find a close-to-optimal solution
● Successfully used for load balancing
● Lower execution times and resource

consumption to reach a solution
than optimizers

● Does not reach an optimal solution
● Some mechanisms lead to unbalanced

communities/partition impacting the
fairness of the solution

Machine

Learning

● For specific tasks there are
techniques that achieve very good
results (e.g., computer vision with
CNNs)

● Hard to validate models in real world
including all the characteristics

● When using Reinforcement Learning
models, there are several issues, like the
nonstationarity and partial observability of
the environment

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 56 de 87

3.2.4 Decision approaches

The allocation of resources is an NP-hard problem commonly tackled by the different techniques described in

the previous section. However, it is important to define the metric (or set of metrics) that will help guide the

decision-making process for this problem. Some of the decision factors frequently used for the resource

allocation and orchestration of the Object-to-Cloud continuum are discussed below, including some examples

of previous efforts by the research community in these directions.

3.2.4.1 Fairness aspects

The Cloud/Fog Orchestrator must be able to provide access to the resources of the communication and

processing infrastructure for different users with a sense of fairness, this means that each user has a fair share

of the resources in the infrastructure and try to evenly distribute these resources among users.

Godinho et al. [GODINHO_FAIR] present a MILP formulation to deal with energy consumption and latency issues

with two objectives, maximize Fog usage and evenly distribute the services throughout the system. Additionally,

they propose a heuristic using a master/slave approach in Fog nodes clusters. The services were evenly

distributed according to their energy consumption throughout the system. Zhao et al. [ZHAO_FAIR] address the

problem of multi-resource fair allocation in Cloud computing. Their heuristic classifies users into different

queues according to their dominant resource requirement, and the goal is to ensure that users from the same

queue are treated equally, maximizing resource utilization subject to fairness properties.

Feng et al. [FENG_FAIR] include min-max fairness guarantees in their proposal for resource allocation in the Fog

aimed at optimizing energy efficiency. They consider the energy consumption of individual links and study the

min-max energy efficiency-optimization. Their solution is based on a mathematical model using Lagrangian dual

decomposition. Du et al. [DU_FAIR] propose a solution for offloading and allocation of tasks in the Cloud/Fog.

Their heuristic combines different optimization goals including computational resources, transmit power, and

radio bandwidth while guaranteeing user fairness and maximum tolerated delay. Results showed that it was

possible to reduce the delay while benefiting mobile users by providing them a fair treatment.

3.2.4.2 Resource usage aspects

Orchestration in the Fog, particularly placement policies using Fog nodes, can benefit the network resource

usage in the communication network since there is no need for additional traffic traversing the entire network

infrastructure up to the Cloud and back to the endpoints. However, Fog nodes are notoriously more resource

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 57 de 87

constrained (processing, storage) in comparison with the Cloud, thus a solution for resource allocation in the

Fog has to carefully analyse the resource usage.

Skarlat et al. [SKARLAT_RU] analyse the placement of IoT services in the Fog according to their QoS

requirements. They use an ILP model aimed at maximizing the utilization of the Fog resources, while taking in

consideration feasibility constraints. Taneja and Davy [TANEJA_RU] describe a heuristic based on a module

mapping algorithm to optimize the resource usage in the Cloud to Fog continuum. The solution is compared

with a Cloud-only approach, being able to not only optimize resource usage but also reducing the latency. Brogi

et al. [BROGI_RU] use multi-objective optimization for service placement, balancing a trade-off between QoS-

assurance and Fog resource consumption. Their proposal is aimed at helping IT experts in the distribution of

application services to Fog infrastructures. The resource consumption is calculated as an aggregated percentage

of RAM and HDD over the Fog nodes. Pallewatta et al. [PALLEWATTA_RU] use a decentralized application

placement policy aimed at using locations closer to the data sources in order to minimize latency and network

usage. The use of the policy resulted in an 85% improvement of network resource usage when compared to

Cloud-only placement, and around 40% improvement over an alternative Fog application placement method.

3.2.4.3 Quality of Service aspects

The applicability of the scenario described in section 2 is dependent of two major factors, since we are dealing

with a URLLC type of service: low latency and high reliability. While the former is more dependent on

transmission and resource allocation mechanisms for massively distributed heterogeneous wireless nodes

[VAQUERO_FOG], that later is more directly related to service availability and blockage errors, which a re both

significantly increased when applications and services are shifted towards the edge of the cloud. The service

orchestrator plays a major role in guaranteeing that efficient mechanisms are in place to guarantee both the

strict latency and reliability requirements.

Mahmud et al. [MAHMUD_LAT] use fuzzy logic to place applications in the Fog to maximize QoE and reduce

deployment time. Simulations are used for assessment. Guerrero et al. [GUERRERO_LAT] propose to place

popular services closer to users, using hop count as a metric for closeness. The devices cooperate among

themselves in a decentralized heuristic. The evaluation is carried out using simulation. In another work,

Guerrero et al. [GUERRERO_LAT_B] use genetic algorithms to optimize latency, service spread, and resource

usage, using Python for simulations.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 58 de 87

Shi et al. [SHI_LAT] also explore using genetic algorithms for service placement in the Fog to minimize latency.

Their genetic solution optimizes load balancing in distributed Cloud/Fog networks. Furthermore, task

reallocation is also considered. Velasquez et al. [VELASQUEZ_LAT] use the graph partition to create communities

in the Fog nodes in order to deploy applications ranked by their popularity. They also propose an ILP model to

find the optimal location in order to minimize latency. The ILP model was able to obtain lower latency levels but

at the same time saturating the nodes at the edge, with the graph partition heuristic getting result s close to the

optimal.

3.2.4.4 Mobility support aspects

It is important to take into consideration the mobile nature of the devices at the edge of the network (e.g.,

sensors in cars), for which location awareness, dynamism, and geo-distribution support must also be included.

Route actualization as well as migration of deployed applications and services must be considered.

Lu et al. [LU_MOB] propose a position-based routing scheme for inter-vehicle communication using VANETs,

while also minimizing resource usage. The routing scheme is based on a greedy heuristic that also considers

repair mode when reaching a maximum number of hops for the delivery of packets. Djemai et al.

[DJEMAI_MOB] propose a service placement solution based on genetic algorithms aimed at supporting node

mobility while ensuring infrastructure energy efficiency and QoS. The GA receives information about node

mobility to reach a decision. The work is complemented by a greedy heuristic that calculates the most probable

path for each mobile device and then computes the proper placement in order to reduce energy consumption.

Gonçalves et al. [GONÇALVES_MOB] use an ILP model for virtual machine placement and migration decisions

based on mobility prediction. Two objective functions are used sequentially, one to maximize the acceptance

and one to minimize latency. They base their proposal on predictable routes (e.g., buses and trains) for the

mobility data.

In 5G scenarios aiming to support URLLC, the non-radio frequency approaches can be followed, considering the

mobility predictions. For instance, the information of accelerometers can be employed to determine the

mobility patterns [JIONG_xURLLC], through ML models. Nonetheless, the integration of such information in 5G

systems is not easy, in particular when considering that the 5G network can have multiple slices.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 59 de 87

3.2.4.5 Resilience aspects

The availability of physical and logical devices in scenarios that support critical applications such as traffic

control, augmented maps and eHealth becomes a key issue to handle. Different techniques can be applied to

enhance the resilience of the services in the Cloud/Fog continuum, like using replication and backup schemes.

For instance, using a primary and backup model, where devices and/or services are duplicated for robustness

purposes. From the communication point of view, another option is using disjoint paths in order to obtain

backup paths that can be activated in case of failures. Migration can also be used in case of disrupted

communication.

Lera et al. [LERA_RES] propose a service placement policy to enhance the availability and QoS of applications

using graph partitions. Simulation results showed that around 70% of the users obtained better response times

in cases of failures, in comparison with another approach using ILP. Aidi et al. propose the use of replicas to

increase the survivability of Services [AIDI_RES]. Two heuristics are proposed for complex scenarios, with the

first aimed at determining the maximum number of services to replicate, and the second to allow the spreading

of services into physical nodes.

Rehman et al. [REHMAN_RES] present a survey on fault tolerance using SDN. Their work aims at identifying fault

tolerance requirements in SDN environments and propose strategies to tackle them. Malik et al. [MALIK_RES]

used divided data and control planes in their proposal of an approach for fault management at the data plane

with the goal of eliminating the convergence time required to allocate new network paths to forward the traffic

after a failure. A time window is used for the update of network paths. Beheshti and Zang [BEHESHTI_RES]

introduce a group of heuristics to improve the resilience of the connection between control and data planes in

SDN, based on resilience-aware controller placement and traffic control routing in the network.

3.2.4.6 Summary

The different decision factors presented in this section and summarized in Table 6 sometimes can go in opposite

directions, i.e., by optimizing one factor the other gets highly affected. For instance, by optimizing resilience by

using replicas, there is an increment in the resource usage, which gets affected. For these cases, it is important

to find a trade-off among competing decision factors. On the other hand, some works consider multiple

optimization goals, prioritizing them according to some criteria. For instance, aiming at providing mobility

support as the main goal but also targeting minimization of resource usage.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 60 de 87

Table 6: Decision approaches solutions

Approach Characteristics of Evaluated Works

Fairness ● Commonly use min-max objectives
● Frequently studied in combination with other optimization goal, such as resource

consumption
● Use of different techniques such as MILP, mathematical models, and heuristics
● Majority of use of simulations for evaluation

Resource

usage

● Commonly used in combination with another optimization goal, like latency
● Use of different techniques like ILP, multi-objective optimization, and heuristics
● Lack of code available or information that allows to replicate results

QoS/Latency ● Different metrics related to latency, such as network delay or processing delay
● Use of different techniques like fuzzy logic, evolutionary and genetic algorithms,

graph partition, and mathematical models
● Majority of use of simulation for the evaluation

Mobility

support

● Consider approaches towards routing and towards migration
● Use of different techniques like ILP and genetic algorithms
● Lack of code available or information that allows to replicate results
● Majority of the works used simulation for evaluation

Resilience ● Use of different strategies, commonly using replication of services or paths
● Could affect other decision factors, such as resource usage, by using replicas of

services, nodes, and paths
● Use of different techniques such as ILP, heuristics, and graph partition
● Some proposals on routing rely on alternative technologies such as SDN

3.3 Orchestration Platforms

This section presents existing solutions to orchestrate computational resources in diverse computing models.

3.3.1 Introduction

Orchestration platforms support NFV Management and Orchestration. For NFV Management virtualization

layers are proposed to support different physical infrastructures. In addition, approaches like SDN are relevant

to allow the management of network resources in agnostic fashion regarding the underlying physical technology

(e.g., wireless, optical networks, etc). ETSI has been specifying [ETSI_NFV] several standards to enhance

interoperability between orchestration platforms, to enable the multi-tenancy support in 5G networks, to

support the Service Based Architecture (SBA), to enable MEC paradigm [ETSIMEC_FRA], among others key

functionalities related with NFV. ONAP [KAPADIA_ORC] is one of the most complete platforms to design, create

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 61 de 87

and manage the lifecycle of network services, while Open Source MANO (OSM) [ETSI_OSM] has been employed

in diverse projects targeting 5G networks and slicing.

3.3.1.1 ONAP

ONAP is a platform for real-time, policy-driven orchestration and automation of physical and virtual network

functions that will support complete lifecycle management and includes a comprehensive design framework to

create network services and related items and a runtime framework (which includes the ETSI MANO

functionality of NFV Orchestrator (NFVO) and VNF Manager (VNFM)) [KAPADIA_ORC]. ONAP primarily interacts

with these software systems:

• Operational support systems (OSS): include OAM (operations, administration and management) and

FCAPS (fault, configuration, accounting, performance, security).

• Business support systems (BSS): include service provisioning, deployment, service change

management, customer information management, service-level agreement (SLA) management, billing

and customer support.

• Big data applications: analytics applications to gain business insights and intelligence from data lakes

containing network data collected by ONAP.

ONAP provides a comprehensive design framework to create network services and a runtime framework. The

runtime framework includes the ETSI MANO functionality of NFVO and VNFM and goes beyond by adding

monitoring and service assurance.

Figure 21: ONAP scope

As per illustrated in Figure 21, ONAP internal high-level architecture defines two major systems — design time

and run time — which allows for clean delineation between design and operational roles. The design time

environment module, whose tool is called the Service Design and Creation (SDC), is responsible for:

• VNF on-boarding/validation

o Create license model

o Onboard VNF

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 62 de 87

o Test VNF

o Store VNF in catalogue

• Network service/SDN service design

o Create service

o Test service

o Store service in catalogue

o Distribute service

• Create recipes

o Policy creation

o Workflow design

o Closed control-loop design.

• Onboard functions

o Analytics applications

o Collectors

o Microservices

o Datastores

The runtime environment module is responsible for:

• Service orchestration and lifecycle management

o Service Orchestration (SO)

o SDN controller (SDN-C)

o Application Controller (APP-C) and Virtual Function Controller (VF-C)

o Infrastructure controller (interface to the VIM).

• Monitoring and service assurance

o Data collection, analytics, and events (DCAE)

o Storage of all active and available inventory (A&AI).

The design-time framework brings forth a comprehensive development environment with tools, techniques,

and repositories for defining and describing resources, services and products, including, policy design and

implementation and an SDK with tools for VNF supplier packaging and validation.

On the other hand, the run-time environment executes the rules and policies distributed by the design and

creation environment, as well as the controllers that manage physical and virtual networks.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 63 de 87

The most important ONAP components for this project are:

• The Service Orchestrator (SO) component: executes the specified processes by automating sequences

of activities, tasks, rules and policies needed for on-demand creation, modification or removal of

network, application or infrastructure services and resources, this includes VNFs, CNFs and PNFs. It is

used for real-time service creation or lifecycle management by primarily interacting with controllers,

SDC and A&AI. SO gets topologies, design time configurations and workflow models via SDC. The SO is

invoked through events, APIs from BSS or manually through VID (Virtual Infrastructure Deployment)13.

SO makes homing (where to place the workload) decisions by interacting with OOF (ONAP Optimization

Framework), resource determination and triggers management actions via one of the four controllers

at its disposal, or by directly interfacing with OpenStack. SO also handles errors and rollbacks.

• The OOF: provides a policy-driven and model-driven framework for creating optimization applications

for a broad range of use cases. OOF Homing and Allocation Service (HAS) is a policy driven workload

optimization service that enables optimized placement of services across multiple sites and multiple

clouds, based on a wide variety of policy constraints including capacity, location, platform capabilities,

and other service specific constraints.

• The runtime Data Collection, Analytics, and Events (DCAE) module: is used for closed control-loop

automation, trending, solving chronic problems, capacity planning, service assurance, reporting, and so

on. DCAE orchestrates data collectors, microservices, analytic applications, and closed control-loops.

Given the model and SDK-driven nature of DCAE, it offers a self-service interface to developers,

designers, and operators, interacting with SDC, Policy, and A&AI.

• Policy: the runtime policy software module guides the automated system without code - purely through

models that allow for dynamic changes. Simple policies may be specified in YAML (XACML), while

complex policies can be described in DROOLS or other languages, all through SDC. An example of a

policy design would be:

 if cpu_load > 80% && duration > 5 minutes {
 add 1 instance of VNF

 }

13 The VID application enables users to instantiate infrastructure services from SDC, along with their associated
components, and to execute change management operations such as scaling and software upgrades to existing VNF
instances.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 64 de 87

• The A&AI component: provides real-time views of a system’s resources, services, products and their

relationships with each other. It tracks products, services, resources - both active and available - and

additionally, A&AI tracks relationships by maintaining a graph database, e.g., subscriber → NS → VNFs

→ VMs → compute/storage/networking nodes, while allowing discovery, registration, and auditing

• The CLAMP (Closed Loop Automation Management Platform) tool: is used to create and configure

policies/templates built-in SDC (Service Design and Creation) to create closed control-loop service

assurance loops. CLAMP interacts with other systems to deploy and execute the control loop. This

component requests from DCAE the instantiation of microservices to manage the control loop flow.

Furthermore, it creates and updates multiple policies in the Policy Engine that define the closed loop

flow. Figure 22 shows a template being configured with the specific collector, threshold, and string

match; it is then “attached” to a network service.

Figure 22: CLAMP workflow (source [KAPADIA_ORC])

• Monitoring and analytics: ONAP has its own monitoring and analytics solution already integrated. It

uses VES (VNF Event Stream) to deliver all the relevant data from the VNFs using an integrated set of

agent and collector code artifacts. The VES Plugin, consumes the collectd data and translates it to VES

format and forwards data to the VES Collector. Then, the VES Collector receives events and publishes

them on the ONAP message bus. It also saves them in a local time-series database. An example of such

a configuration is illustrated in Figure 23.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 65 de 87

Figure 23: ONAP monitoring & analytics

With this solution, ONAP offers a VES Agent library enabling VNFs to directly support VES for delivering

measurements, the DCAE collector, which receives events in the VES format and publishes them on the

ONAP message bus DMaaP (Data Movement as a Platform), as well as saves them in a local time-series

database and a DCAE data analytics platform that can use PNDA (not necessarily; it is just one of the possible

tools). The flow is: VNF → Collector → DCAE bus → Analytics → ONAP bus (DMaaP) → Policy → ONAP bus

(DMaaP) → SO

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 66 de 87

3.3.1.2 OSM

The Open Source MANO (OSM), promoted by ETSI, is an open source management and orchestration stack

aligned with the ETSI NFV Information models [ETSI_OSM]. The OSM reference architecture is illustrated in

Figure 24, highlighting the Service platforms and the common management.

Figure 24: OSM Reference Architecture (source [ETSI_OSM])

The OSM acts as a Network Service Orchestrator, being responsible for Network Services and Network Slices in

5G networks. OSM is able to orchestrate different types of Network Functions (NFs), including VNFs, PNF,

Hardware Network Functions (HNFs) and Containerized Network Functions (CNFs). Such functions can run on

different infrastructures and are managed through the Infrastructure as a Service (IaaS) API or via the Or -Vi

interfaces. The Virtual Infrastructure Manager (VIM) is responsible for managing the required computation

resources and storage to run the network functions. When diverse infrastructures (i.e., VIMs are connected),

there is the need to manage the inter-datacentre connectivity, as well as the associated security levels (e.g.,

encryption of transport layer information). The WAN Infrastructure Manager (WIM) components are

responsible to make the connection between datacentres employing SDN approaches.

The Common management plane of OSM includes a set of common services like the identity, which is

responsible for user identities in the diverse platforms. The management of identity information commonly

relies on Lightweight Directory Access Protocol (LDAP). The Single Sign On (SSO) service allows to manage

context of users in the diverse platforms, in particular regarding authentication purposes. The PKI and DNS

services act as supporting services for certificate management and naming resolution, respectively.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 67 de 87

This management plane also includes OAM tools to manage the lifecycle of infrastructures (e.g., operations and

maintenance of OpenStack deployments), the backends that allow to collect metrics (i.e. employing time series

databases) and run alarmistic on the collected data. In addition, the backends also include logging facilit ies.

Dashboards with information regarding the status of platforms in real-time, but also mechanisms to facilitate

the deployment of complex services are also made available.

The OSM has evolved through diverse versions, the version 9 is the most recent (at the date of writing this

report). In addition, several projects [FLAVIO_SLIMANO] targeting the deployment of VNFs in 5G networks have

considered OSM as the underlying architecture to manage and orchestrate resources in a standardized fashion.

OSM includes a monitoring collector, to collect metrics at the infrastructure level and per VNF, as illustrated in

Figure 25. The metrics regarding the infrastructure are provided by the VIM (e.g., ceilometer in OpenStack),

while the metrics of the VNFs, are described in the templates and collected through JuJu Metr ics service.

Figure 25: OSM and monitoring (source [ETSI_OSM_USERGUIDE])

OSM does not hold a DCAE module as ONAP [LOCUS_5G], nonetheless OSM is able to support automated

network service orchestration, considering the policies defined for the Network Service (NS) and VNF levels.

Considering the monitored metrics, at infrastructure and application levels, OSM is able to regulate the VNF

scaling operations. In addition, OSM has also a Northbound API that also enable the configuration of the service

lifecycle (i.e., start/stop/resume services), such configuration can be performed through 3rd party services that

implement resource optimization approaches.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 68 de 87

3.3.1.3 Other platforms

This subsection includes other orchestration platforms that are the result of research initiatives or are not open-

source and have costs associated for enterprise usage.

3.3.1.3.1 OpenBaton

OpenBaton is an open-source implementation of the ETSI MANO specification, providing a NFV Orchestrator

and a generic VNFM [CARAGUAY_ORC]. For monitoring, it offers a Zabbix plugin and for VIM implementation,

an OpenStack driver [GIUSEPPE_ORC].

Figure 26: OpenBaton architecture (source [CARAGUAY_ORC])

An autoscaling engine interacts with the monitoring system for retrieving real time data and dynamically scales

a network service record based on policies contained in the network service descriptor. The Fault Management

System (FM) creates rules for detecting faults on the monitoring system and registers triggers (and every time

a trigger is received, it executes an action).

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 69 de 87

3.3.1.3.2 Cloudify

Cloudify is a multi-cloud orchestration software based in Topology and Orchestration Specification for Cloud

Applications (TOSCA) that leverages both NFVO and Generic Virtualized Network Function Manager (G-VNFM)

in the context of the ETSI NFV-MANO [AMARAL_ORC]. One of its key characteristics is the modeling of

composed services using the Domain-Specific Language (DSL). It allows the integration with multiple VIMs,

containers, and even with external and non-virtualized infrastructure. Cloudify includes deployment in any

cloud or datacenter environment, monitoring all aspects of the deployed application, detecting problems and

failures, remediating assets manually or automatically, and handling maintenance tasks.

3.3.1.4 Summary

Table 7 [SOUSA_ORC] displays a comparison performed among orchestration platforms (legacy refers to the

capability of handling technologies such as MPLS, BGP, SONET / SDH, and WDM):

Table 7: Comparison of orchestration platforms

Solution Leader
VNF

definition
SDN NFV Legacy VIM

Multiple

domains

O-RAN

support

ONAP Linux Foundation
TOSCA,

YANG
✓ ✓ ✓ ✓ ✓ ✓

OSM ETSI YANG ✓ ✓ ✓ ✓ ✓

OpenBaton
Fraunhofer Institute

Technical U. Berlin
TOSCA ✓ ✓

ONAP and OSM are shown as the most complete orchestration platforms, especially since they offer the

possibility of spanning across multiple domains including RAN and optical transport, which enables an end-to-

end service. OSM in recent versions (v8 onwards) brings support for multiple domains with the WAN

Infrastructure Manager components, with ONAP having the advantage of having TOSCA support. In addition,

comparative studies [GIRMA_OSM] highlight that the performance of ONAP is superior in terms of resource

usage (e.g., OSM tends to use more CPU and memory), and is almost similar regarding the deployment

processing delays.

Not only OSM and ONAP have the strongest community of developers, due to their open-source nature and

support from ETSI and Linux Foundation, both solutions were the only two chosen orchestration frameworks

for the Open-RAN, an alliance of telecom companies responsible for the specification of APIs and interfaces that

can enable RAN virtualization.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 70 de 87

Another advantage of ONAP is that it offers integration with Cloudify, by using the Cloudify’s DCAE and OOM

(ONAP Operations Manager) on the ONAP framework. Since Cloudify is TOSCA based, when merged with ONAP,

a TOSCA SO, such as Aria, must be used. Figure 27 illustrates this concept.

Figure 27: Cloudify/ONAP fusion (source [SOUSA_ORC])

A potential drawback of such a solution as the one illustrated in this figure, is that some features of Cloudify are

only available in the premium (paid) version.

3.4 Virtualization

This section overviews solutions to virtualize infrastructures, to support network functions in different hardware

platforms.

3.4.1 Introduction

The fundamental concept of virtualization relies on the coexistence of host and guest machines, where the host

is the machine in which the virtualization occurs, and the guest machines represent the virtual machines

operating through the host. The tool, used with the purpose of supervising the virtual machines, is called the

hypervisor, which comes in two flavours: if the hypervisor replaces host system, this is called a native (or bare

metal) hypervisor; and if the hypervisor operates under the operating system, this is called a hosted hypervisor.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 71 de 87

3.4.1.1 OpenStack

The core component of a cloud is the cloud controller, that provides cross-domain automation [SOLBERG_VIR].

The most popular open source cloud controller is OpenStack, followed by Apache CloudStack and OpenNebula.

Figure 28 illustrates the main components of OpenStack and their relationship with Compute, Network and

Storage blocks:

Figure 28: OpenStack virtualization (source: [SHRIVASTWA_VIR])

Other important components of OpenStack are the Keystone, the Glance and the Swift. The OpenStack flow

between the various components is illustrated in Figure 29.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 72 de 87

Figure 29: Flow of OpenStack components

• Horizon is the canonical implementation of OpenStack's dashboard, which is extensible and provides a

web based user interface to OpenStack services.

• Neutron provides an API for creating ports, subnets, networks, and routers. Additional network services

such as firewalls and load balancers are provided in some OpenStack deployments. It is focused on

delivering networking-as-a-service (NaaS) in virtual compute environments.

• Nova supports various hypervisors for virtual machines such as KVM, and VMware. It also supports Linux

Containers (LXC). Its purpose is to implement services and associated libraries to provide massively

scalable, on demand, self-service access to compute resources, including bare metal, virtual machines,

and containers.

• Glance service allows the storage and retrieval of images and corresponding metadata , i.e., it allows

the store of OS templates that need to be made available for the users to deploy. Glance image services

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 73 de 87

include discovering, registering, and retrieving virtual machine images. Glance has a RESTful API that

allows querying of VM image metadata as well as retrieval of the actual image. VM images made

available through Glance can be stored in a variety of locations from simple filesystems to object -

storage systems like the OpenStack Swift project.

• Cinder provides block storage to the Nova VMs. Its subsystems include a volume manager, a SQL

database and an authentication manager. It virtualizes the management of block storage devices and

provides end users with a self-service API to request and consume those resources without requiring

any knowledge of where their storage is actually deployed or on what type of device. This is done

through the use of either a reference implementation (LVM) or plugin drivers for other storage.

• Ceilometer service is used to collect metering data. Its goal is to efficiently collect, normalise and

transform data produced by OpenStack services. The data it collects is intended to be used to create

different views and help solve various telemetry use cases.

• Keystone service provides identity and access management for all the components of OpenStack.

• When a compute instance is terminated, the ephemeral storage associated with the instance is deleted

from the compute host on which it resided. Persistent storage provided in the OpenStack system is

object storage, which is provided by the Swift service (the swift service is used to actually store Glance

images).

 Finally, Heat is a service that allows developers to store the requirements of a cloud application in a file that

defines what resources are necessary for that application. Note that these are just some of the blocks, since

various other ones are available, although they are not mandatory.

3.4.1.2 Kubernetes

Kubernetes, also known as k8s, is a platform for container14 orchestration, which enables the deployment,

scaling of containerized applications. Kubernetes supports self-healing approaches based on user-defined

health checks, or on the unavailability of containers, enables load balancing to distribute the load between

microservices.

14 Containers is a standard unit of software with code and its dependencies to assure that the applications runs quickly and
in a reliable fashion. Containers allow applications to run easily in different computing environments.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 74 de 87

Figure 30: Architecture of Kubernetes (source [DAVID_K8S])

The architecture of Kubernetes includes several components, as illustrated in Figure 30. The master manages

the microservices and the load between nodes. Such management is performed through the API server, the

controller management server and a daemon responsible to manage all the configurations (e.g., secrets,

certificates, among others).

The node holds the Kubelet that is responsible to make the interface with the master (e.g., receive commands),

the proxy component to hold network services for naming the diverse Pods and microservices. The Pods

correspond to a collection of containers and volumes that share common resources like the filesystem and IP

addresses. Other entities in the K8S architecture are also included, like the Replication controllers, which allow

the distribution of load between the pods, and assure that the required availability levels are assured.

The networking model of Kubernetes mainly relies on the kube-proxy, which assure intra-pod communication

via the localhost concept and ports for the microservices. The Inter-pod communication is performed through

routable IP addresses and assigned names. In this regard, K8S uses an internal domain service to assign names

to Pods [ADRIAN_K8S]. The flexibility of K8S allows it to adopt different solutions for DNS (KubeDNS, coreDNS),

as well as services to manage policies like which applications can access a certain pod (access based on IP

information). Besides the base services for networking, there is also the Container Network Interface (CNI)

which provides IP address management for Pods and maintains routes for the virtual interfaces in a standard

fashion.

The CNI allows the development of different solutions for the networking in k8s, via a system of network plugins.

such plugins have different design goals, for instance Flannel is developed with simplicity in mind to enable L3

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 75 de 87

routing. The Calico plugin is intended to enable performance with security and flexible policies specification.

Other plugins like KubeOVN aim to promote the integration of networking with enterprise level mechanisms,

such as monitoring (e.g., integration with Prometheus for fault analysis), dynamic QoS for pods, policies to

assign IP addresses for instance, static IP addresses can be assigned to stateful Pods. KubeOVN relies on the

Open Virtual Network (OVN) project to promote the integration of physical network elements with logical

network elements (virtual switches, virtual routers).

The management of microservices is also supported at the edge through, platforms that require fewer

resources, but provide at the same time, a synchronized approach with the cloud, where k8s clusters run. The

Kubedge is one of the projects under the umbrella of the CNCF15 to enable resource optimization at the edge

and cloud, in different computing platforms like ARM and x86. Kubedge can contribute to enhance resilience

support, where service functions can be deployed close to the user, to manage IoT devices in a scalable fashion

(e.g., manage video cameras). Through Kubedge the service functions can be orchestrated at the edge and

synchronized with the cloud running in K8S or other orchestration platform.

The employment of K8s and related technologies provides benefits, in 5G context [NOKIA_5G_CONTAINERS].

The risk of deploying services is reduced, for instance the maintenance of microservices is more flexible than

services implemented as VMs (e.g., updates in VMs are costly). In addition, micro-services increase the

resilience support due to the fault isolation, where a fault in a critical component (running as microservice) does

not affect the whole system.

3.4.1.3 Service Mesh

Service Mesh is a dedicated infrastructure layer to facilitate service-to-service communication, through service

discovery, routing, load balancing, traffic configuration, encryption, authentication, authorization and

monitoring approaches [NIST_800-204]. Service mesh allows the declaration of policies defining the network

behaviour, node’s identity, and traffic flow.

15 https://www.cncf.io/

https://www.cncf.io/

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 76 de 87

Figure 31: Service Mesh Architecture (source [WLI_SMCSAFRO])

Service mesh includes two planes, as illustrated in Figure 31. The data plane includes proxies (often called as

side-car proxy) to handle application request traffic between service instances (deployed as microservices or as

VNFs). The control plane includes elements to configure the data planes, and provides points of aggregation for

telemetry, load balancing.

Service Mesh is mainly designed for microservices architecture like Istio, Linkerd, but other approaches also

support Virtual Machines (VM) deployments like Kuma or Consul. Service Mesh can be performed with VMs,

through different approaches:

• Using a proxy sidecar (commonly relying on the Envoy solution [ISTIO_BOOKINFO]), where services
running in the VM connect to the proxy to handle all the traffic and security. This approach, has the
advantage of facilitating the interconnection with a running K8S deployment, as illustrated in Figure 32
for a simple application.

• Using specific interfaces, or a connect-native application approach [CONSUL_NATIVEAPP], where
services connect to an API, or use a library to connect to the service mesh data plane.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 77 de 87

Figure 32: Service mesh example of application running in VMs and K8S (source [ISTIO_BOOKINFO])

One of the benefits of Service Mesh is the added security by enabling strong identity, robust policies, mutual

TLS (mTLS) encryption, and authentication, authorization and accounting (AAA) tools.

In addition, there is also ongoing specification regarding a standard interface for Service Management, the

Service Management Interface (SMI) to enable a common interface for service mesh in Kubernetes [LIU_ISTIO].

Relying on the SMI, approaches like Meshery act as the service mesh management plane enabling the

management of service mesh and their workloads in a unified fashion.

Commercial solutions, like the VMWARE-NSX [VMWARE_NSX] implement service mesh to enhance the

flexibility of deployment in cloud data centers within different virtualization technologies (e.g., VMs,

containers). In such contexts, service mesh includes support for telemetry of protocols like DNS, HTTP/S, firewall

support and load-balancing at the data plane.

The OREOS platform can leverage from service mesh, considering the benefits for service reliability within

approaches different virtualization technologies (e.g., containers, VMs).

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 78 de 87

3.4.1.4 Summary

Table 8 summarizes the virtualization approaches, highlighting their advantages and disadvantages.

Table 8: Virtualization solutions

Approach Advantages (++) Disadvantages (--)

OpenStack ● Modular architecture
● Most popular solution with a large

community of users and developers

● OpenStack is a collection of different
projects, so it is necessary to install and
configure each module separately.

Kubernetes ● Tailored for microservices.
● adopted as the industry standard for

microservices

● The split of applications into microservices,
might not meet stringent latency
requirements.

Service

Mesh

● Does not require modifications to
applications to enable resilience

● Enables high availability and load
balancing, even between different
cloud solutions.

● Facilitates securing services with
support for mTLS.

● Mainly for microservices.
● Mainly targeted for web services, relying on

HTTP, gRPC.
● Does not virtualize resources.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 79 de 87

4. Conclusion

5G networks bring support for critical services, vehicular communications, with URLLC communications and

other mechanisms like network slicing. The 5G SBA architecture allows the distribution of service functions at

the edge, following MEC computing paradigm, or exploiting the benefits of different architectural models, such

as Fog, Edge and Cloud computing.

The orchestration platform to be designed and developed in OREOS aims to comply with ETSI MEC specification,

to enable applications to run at the edge, and distribute the diverse functions considering Fog and Cloud

computing models. In this regard, the OREOS architecture will be aligned with the OpenFog reference

architecture to support the Cloud-to-Object continuum paradigm.

The critical services targeted in the application scenarios of OREOS require low-latency and reliability. For this

aim, the orchestration platform of OREOS will integrate the information from multiple tools, like monitoring,

analytics and orchestration platforms such as ONAP or OSM. The monitoring tools allow the collection and

monitoring of resources, like CPU, memory or disk usage, and network load in a given moment. The analytics

solutions allow to perform intelligent queries in the monitored data, or to enable actions considering certain

thresholds (e.g., raise an alarm when CPU is above 75% in a time period of five minutes). Analytics solutions,

like Druid support a distributed architecture to store data and to perform exploratory analytics on large data

sets with low latency. In this regard, it is expected that the orchestration platform of OREOS will support data

streams from multiple sources (e.g., kafka, publish-subscribe models) for enhanced and complete analytics.

The orchestration of VNFs or CNFs in OREOS can leverage from the orchestration functionalities provided by

ONAP or OSM, which are the most complete solutions, supporting different infrastructures like OpenStack,

VMWare. In addition, ONAP already includes components to perform optimization of resources like the DCAE

component, which is able to integrate policies and to automate the service lifecycle. Through DCAE the scaling

of VNFs can be instrumented considering inputs from analytics solutions. The resources for VNFs can be

optimized considering allocation policies that consider multiple criteria in NP-Hard problems. For instance,

following a MILP formulation, or a heuristic approach to reduce energy consumption and latency in Fog nodes.

The OREOS architecture can also leverage from approaches like Kubedge or service mesh technologies. These

can reduce latency and enhance the resilience support in services with minimal modifications. Solutions like

Kubeedge facilitate the interconnection between the edge and cloud, and data acquisition at the edge in a

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 80 de 87

scalable fashion. The service mesh technology provides high availability mechanisms that are agnostic of the

infrastructure and underlying orchestration platform.

This document presents the main technologies and approaches to enable the OREOS orchestration platform,

aggregating contributions from tasks 2.1 and task 2.2.

Finally, the document will act as the base for the work in activity 3, regarding the specification of use cases and

the analysis of respective requirements, in activity 2 regarding the specification of the architecture and the

integration of the optimization approaches for resource allocation.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 81 de 87

5. References

[5GAA_USECASE] T. Linget. “C-V2X Use Cases Volume II: Examples and Service Level Requirements”. 5GAA

Automotive Association. White paper, 2020

[ADRIAN_K8S] Adrian Goins, Alena Prokharchyk, Murali Paluru. “Diving Deep into Kubernetes Networking”,

2020, RANCHER.

[AIDI_RES] S. Aidi, M. F. Zhani, and Y. Elkhatib. “On improving service chains survivability through efficient

backup provisioning”. In 2018 14th International Conference on Network and Service Management (CNSM),

2018. pages 108–115, Rome, Italy. IEEE.

[AMARAL_ORC] T. Amaral et al. “Closed-loop Orchestration in 5G: Designing a Service Operation in Fulfillment

Frameworks”. In Joint EuCNC & 6G Summit, 2021 Porto, Portugal

[BEHESHTI_RES] N. Beheshti, and Y. Zhang. “Fast failover for control traffic in Software defined Networks”. In

Global Communications Conference (GLOBECOM), 2012 IEEE, pages 2665–2670, Anaheim, USA. IEEE.

[BITTENCOURT_CHOREO] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, L. Villas,

L. DaSilva, C. Lee, and O. Rana. “The Internet of Things, Fog and Cloud continuum: Integration and

challenges”. Internet of Things, 2018. 3-4(1):134 – 155.

[BRAZIL_MON] B. Brazil. “Prometheus: Up & Running”. O’Reilly Publishing, 2018

[BRITO_SOAFI] de Brito MS, Hoque S, Magedanz T, Steinke R, Willner A, Nehls D, Keils O, Schreiner F. “A service

orchestration architecture for fog-enabled infrastructures”. In: 2017 Second International Conference on

Fog and Mobile Edge Computing (FMEC). Valencia: IEEE; 2017. p. 127–32.

[BROGI_RU] A. Brogi, S. Forti, and A. Ibrahim. “Optimising QoS-Assurance, Resource Usage and Cost of Fog

Application Deployments”. Cloud Computing and Services Science, 2019. 168–189.

[CARAGUAY_ORC] A. Caraguay. “Monitoring and discovery for self-organized network management in

virtualized and software defined networks”. PhD thesis. 2017, Universida Complutense de Madrid

[CHEN_ML] Chen, X., Zhao, Z., Wu, C., Bennis, M., Liu, H., Ji, Y., & Zhang, H. (2019). “Multi-tenant cross-slice

resource orchestration: A deep reinforcement learning approach”. IEEE Journal on Selected Areas in

Communications, 37(10), 2377-2392.

[CHEN_CLOUDLETARCH] Chen, M., Hao, Y., Li, Y., Lai, C.F., Wu, D. “On the computation offloading at ad hoc

cloudlet: architecture and service modes”. IEEE Communications Magazine 53(6), 18 - 24 (2015).

[DAVID_K8S] David K. Rensin, Kubernetes. “Scheduling the future at cloud scale”. October 6, 2015, O’Reilly.

[DHIRAJ_PDAUPOST] Dhiraj Bhuyan, “Practical Data Analysis: Using Python & Open Source Technology”, 2019.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 82 de 87

[DJEMAI_MOB] T. Djemai, P. Stolf, T. Monteil and J. M. Pierson, "Mobility Support for Energy and QoS aware

IoT Services Placement in the Fog," 2020 International Conference on Software, Telecommunications and

Computer Networks (SoftCOM), Split, Croatia, 2020, pp. 1-7

[DU_FAIR] J. Du, L. Zhao, J. Feng and X. Chu, "Computation Offloading and Resource Allocation in Mixed

Fog/Cloud Computing Systems with Min-Max Fairness Guarantee," in IEEE Transactions on Communications,

vol. 66, no. 4, pp. 1594-1608, April 2018

[ESTEVA_ML] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S.

Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature Medicine, vol. 25, no. 1, pp. 24–29,

2019. [Online]. Available: https://doi.org/10.1038/s41591- 018- 0316-z

[ETSIMEC_FRA] ETSI, “Multi-access Edge Computing (MEC) Framework and Reference Architecture”, ETSI GS

MEC 003, v2.1.1, 2019-01, [Online]. Available at:

https://www.etsi.org/deliver/etsi_gs/mec/001_099/003/02.01.01_60/gs_mec003v020101p.pdf

[ETSI_NFV] ETSI. (2012) “ETSI - Industry Specification Group for NFV”. [Online]. Available:

http://www.etsi.org/technologies-clusters/technologies/nfv

[ETSI_OSM] ETSI, Open Source MANO – OSM Release NINE Release notes, December 2020 [Online]: Available:

https://osm.etsi.org/wikipub/images/0/01/OSM_Release_NINE_-_Release_Notes.pdf

[ETSI_OSM_USERGUIDE] ETSI, Open Source MANO – OSM User Guide [Online]: Available:

https://osm.etsi.org/docs/user-guide/05-osm-usage.html#monitoring-and-autoscaling

[FANGJIN_ANA] Fangjin Yang et al. “Druid: A Real-time Analytical Data Store”. In Proceedings of the ACM

International Conference on Management of Data (SIGMOD), 2014. Pages 157–168

[FARABET_ML] C. Farabet, C. Couprie, L. Najman and Y. LeCun, "Learning Hierarchical Features for Scene

Labeling," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1915-1929.

[FENG_FAIR] J. Feng, L. Zhao, J. Du, X. Chu and F. R. Yu, "Energy-Efficient Resource Allocation in Fog Computing

Supported IoT with Min-Max Fairness Guarantees," 2018 IEEE International Conference on Communications

(ICC), Kansas City, MO, USA, 2018, pp. 1-6

[Feng_ML] Feng, D., Haase-Schuetz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck, W., &

Dietmayer, K. “Deep multi-modal object detection and semantic segmentation for autonomous driving:

Datasets, methods, and challenges”. IEEE Transactions on Intelligent Transportation Systems, 2020.

[FLAVIO_SLIMANO] F. Meneses, M. Fernandes, D. Corujo, and R. L. Aguiar, “SliMANO: An Expandable

Framework for the Management and Orchestration of End-to-end Network Slices,” Proceeding 2019 IEEE

8th Int. Conf. Cloud Networking, CloudNet 2019, 2019.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 83 de 87

[GIRMA_OSM] G. M. Yilma, Z. F. Yousaf, V. Sciancalepore, and X. Costa-Perez, “Benchmarking open source NFV

MANO systems: OSM and ONAP,” Comput. Commun., vol. 161, no. June, pp. 86–98, 2020.

[GIUSEPPE_ORC] Giuseppe Carella et al. “Prototyping NFV-based Multi-access Edge Computing in 5G ready

Networks with Open Baton”. In IEEE Conference on Network Softwarization (NetSoft), 2017 Bologna, Italy

[GODINHO_FAIR] N. Godinho, M. Curado and L. Paquete, "Optimization of Service Placement with Fairness",

2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 2019, pp. 1-6.

[GONÇALVES_MOB] D. Gonçalves, K. Velasquez, M. Curado, L. Bittencourt and E. Madeira, "Proactive Virtual

Machine Migration in Fog Environments," 2018 IEEE Symposium on Computers and Communications (ISCC),

Natal, Brazil, 2018, pp. 00742-00745

[GUERRERO_LAT_B] C. Guerrero, I. Lera, and C. Juiz. “Evaluation and efficiency comparison of evolutionary

algorithms for service placement optimization in fog architectures”. Future Generation Computer Systems,

2019. 97(1):131 – 144.

[GUERRERO_LAT] C. Guerrero, I. Lera, and C. Juiz. “A lightweight decentralized service placement policy for

performance optimization in fog computing”. Journal of Ambient Intelligence and Humanized Computing,

2019. 10(1):2435–2452.

[HARTUNGA_MON] M. Hartunga and M. Korner. “SOFTmon - Traffic Monitoring for SDN”. Procedia Computer

Science, 2017. 110:516–523.

[HOCHREITER_ML] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 1997.

[ISTIO_BOOKINFO] Istio, bookinfo App [online], Available: https://istio.io/latest/docs/examples/virtual-

machines/

[ITU-R_M.2410] ITU-R M.2410-0, Minimum requirements related to technical performance for IMT-2020 radio

interface(s).

[JEAN_PINOT] J. F. Im et al., “Pinot: Realtime OLAP for 530 Million Users ACM Reference Format,” Sigmod, pp.

583–594, 2018.

[JIANG_ORCH] Y. Jiang, Z. Huang, and D.H.K. Tsang . “Challenges and Solutions in Fog Computing Orchestration”.

IEEE Network, 2018. 32(3):122–129.

[JIONG_xURLLC] Jiong Park et al., “Extreme URLLC: Vision, challenges, and key enablers,” arXiv, 2020.

[KAPADIA_ORC] A. Kapadia. “ONAP Demystified”, 2nd ed. Aarna Networks, Inc., 2018

[KOCJAN_MON] W. Kocjan and P. Beltowski. Learning Nagios. Packt Publishing, 2016

[KRIZHEVSKY_ML] Krizhevsky, A., Sutskever, I. and G. E. Hinton, “ImageNet classification with deep convolut ional

neural networks,” Communications of the ACM, 60(6), pp. 84–90, 2017.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 84 de 87

[LEE_ML] Lee, W., Kim, M., & Cho, D. H. (2018). “Deep power control: Transmit power control scheme based

on convolutional neural network”. IEEE Communications Letters, 22(6), 1276-1279.

[LERA_RES] I. Lera, C. Guerrero, and C. Juiz. “Availability-aware service placement policy in fog computing based

on graph partitions”. IEEE Internet of Things Journal, 2019. 6(2):3641–3651.

[LEY_ANA] E. Ley, D. Jacobs. “Rules-based Analysis With JBoss Drools: Adding Intelligence to Automation”. In

Proceedings of ICALEPCS, 2011 Grenoble, France.

[LI_ML] Li, R., Wang, C., Zhao, Z., Guo, R., & Zhang, H., “The LSTM-based advantage actor-critic learning for

resource management in network slicing with user mobility”. IEEE Communications Letters, 24(9), 2020.

[LI_ML_SLICE] Li, R., Zhao, Z., Sun, Q., Chih-Lin, I., Yang, C., Chen, X., ... & Zhang, H., “Deep reinforcement

learning for resource management in network slicing”. IEEE Access, 6, 74429-74441, 2018.

[LIANG_ML] Liang, L., Ye, H., Yu, G., & Li, G. Y., “Deep-learning-based wireless resource allocation with

application to vehicular networks”. Proceedings of the IEEE, 108(2), 341-356, 2019.

[LIEFTING_MON] N. Liefting, B. Baekel. “Zabbix 5 IT Infrastructure Monitoring Cookbook”, Packt Publishing, ‘21.

[LIU_CONCERT] Liu J, Zhao T, Zhou S, Cheng Y, Niu Z. “Concert: a cloud-based architecture for next-generation

cellular systems”. IEEE Wireless Communications. 2014;21(6):14–22

[LIU_ISTIO] Liu Sun and D. Berg, “Istio Explained Getting Started with Service Mesh”, 2020

[LOCUS_5G], Locus H2020 project, D2.4, 2021, available at: https://www.locus-project.eu/wp-

content/uploads/2021/02/Deliverables-officially-submitted_D2.4_D2.4-9-8-20-nbm-final.pdf

[LOPEZ_ML] M. M. Lopez and J. Kalita, “Deep learning applied to NLP,” CoRR, vol. abs/1703.03091, 2017.

[Online]. Available: http://arxiv.org/abs/ 1703.03091

[LU_MOB] Lu, T., Chang, S., and Li, W. “Fog computing enabling geographic routing for urban area vehicular

network”. Peer-to-Peer Networking and Applications, 2018. 11(4):749–755.

[MAHMUD_LAT] R. Mahmud, S.N. Srirama, K. Ramamohanarao, and R. Buyya. “Quality of Experience (QoE)-

aware placement of applications in Fog computing environments”. Journal of Parallel and Distributed

Computing, 132(1):190 – 203, 2019.

[MALIK_RES] A. Malik, B. Aziz, M. Adda, and C.-H.Ke, C.-H. “Smart routing: Towards proactive fault handling of

software-defined networks”. Computer Networks, 2020. 170(1):1389–1286.

[NASIR_ML] Nasir, Y. S., & Guo, D., “Multi-agent deep reinforcement learning for dynamic power allocation in

wireless networks”. IEEE Journal on Selected Areas in Communications, 37(10), 2239-2250, 2019.

[NEWMAN_GP] M. E. J. Newman and M. Girvan. “Finding and evaluating community structure in networks”,

Phys. Rev. E, 69:1–15, 2004.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 85 de 87

[NIST_800-204] R. Chandramouli, “NIST Special Publication 800-204 - Security strategies for microservices-

based application systems,” NIST Spec. Publ., 2019.

[NOKIA_5G_CONTAINERS] Rob McManus, “Containers and the evolving 5G cloud-native journey,” Nokia, 2020.

[OPENFOG_RAFC] OpenFog Consortium, “OpenFog Reference Architecture for Fog Computing”, February 2017.

[PAGE_GP] L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank Citation Ranking: Bringing Order to

the Web”, Technical Report 1999-66, Stanford InfoLab, 1999.

[PALLEWATTA_RU] S. Pallewatta, V. Kostakos, R. Buyya. “Microservices-based IoT Application Placement

within Heterogeneous and Resource Constrained Fog Computing Environments”. 12th IEEE/ACM

International Conference on Utility and Cloud Computing, Pages 71–81, 2019

[PARES_GP] F. Parés, D. G. Gasulla,A. Vilalta, J. Moreno, E. Ayguadé, J. Labarta, U. Cortés, and T. Suzumura.

“Fluid communities: A competitive,scalable and diverse community detection algorithm”. InComplex

Networks & Their Applications VI, pages 229–240, Lyon, France. Springer, 2018.

[PNDA_GUIDE] PNDA, “PNDA Guide”, [Online], Available: http://pnda.io/guide.

[REHMAN_RES] A. U. Rehman, R. L. Aguiar, and J. P. Barraca. “Fault-tolerance in the scope of software-defined

networking (SDN)”. IEEE Access, 2019. 7(1):124474 – 124490.

[ROMAN_COSOLAP] Roman Leventov, “Comparison of Open Source OLAP Systems for Big Data: ClickHouse,

Druid, Pinot“, [Online] Available at: https://leventov.medium.com/comparison-of-the-open-source-olap-

systems-for-big-data-clickhouse-druid-and-pinot-8e042a5ed1c7

[SALATINO_ANA] M. Salatino, M. Maio and E. Aliverti. “Mastering JBoss Drools 6”. Packt Publishing, 2016

[SHI_LAT] C. Shi, Z. Ren, K. Yang, C. Chen, H. Zhang, Y. Xiao, and X. Hou, “Ultralow latency cloud-fog computing

for industrial Internet of Things,” in 2018 IEEE Wireless Communications and Networking Conference

(WCNC). Barcelona, Spain: IEEE, June 2018, pp. 1–6.

[SHOKHIN_MON] A. Shokhin. “Network monitoring with Zabbix”. Bachelor’s Thesis, 2015, Mikkeli University of

Applied Sciences

[SHRIVASTWA_VIR] A. Shrivastwa and S. Sarat. “Learning OpenStack”. Packt Publishing, 2015

[SKARLAT_RU] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner. “Optimized IoT service placement

in the fog”. Service Oriented Computing and Applications, 2017.11(4):427–443.

[SKJENSEN_TSMS] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Time series management systems: A survey,”

arXiv, vol. 29, no. 11, 2017.

[SOLBERG_VIR] M. Solberg and B. Silverman. “OpenStack for architects”. Packt Publishing, 2017.

[SOUSA_ORC] N. Sousa et al. “Network Service Orchestration: A Survey”. Computer Communications, 2019.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 86 de 87

[TAHEROZADEH_MON] S. Taherizadeh et al. “Monitoring self-adaptive applications within edge computing

frameworks: A state-of-the-art review”. The Journal of Systems and Software, 2018. 136: 19–38.

[TANEJA_RU] M. Taneja, and A. Davy. “Resource aware placement of IoT application modules in Fog-Cloud

Computing Paradigm”. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),

pages 1222–1228, 2017. Lisbon, Portugal. IEEE.

[TAYYABA_ML] Tayyaba, S. K., et al., “5G vehicular network resource management for improving radio access

through machine learning”. IEEE Access, 8, 6792-6800, 2020.

[TRAKADAS_MON] P. Trakadas et al. Scalable Monitoring for Multiple Virtualized Infrastructures for 5G Services.

In The Seventeenth International Conference on Networks (ICN), 2018

[TNOVA_MON] I. Koutras et al, “Monitoring and maintenance”. Deliverable D4.41 of grant agreement 619520,

2015

[VAQUERO_FOG] Vaquero LM, Rodero-Merino L., “Finding your way in the fog: Towards a comprehensive

definition of fog computing”. SIGCOMM Comput Commun Rev. 2014; 44(5):27–32.

[VELASQUEZ_CHALL] K. Velasquez, D. Perez Abreu, et al., “Fog orchestration for the internet of everything:

state-of-the-art and research challenges”. Journal of Internet Services and Applications, 2018. 9(1):1–23.

[VELASQUEZ_LAT] K. Velasquez, D. Perez Abreu, L. Paquete, M. Curado, and E. Monteiro, “A Rank-based

Mechanism for Service Placement in the Fog,” in 2020 IFIP Networking. Paris, France: IEEE, 2020, pp. 64–72.

[VELASQUEZ_SORTS] K. Velasquez, D. Perez Abreu, D. Gonçalves, L. Bittencourt, M. Curado, E. Monteiro, and E.

Madeira. “Service Orchestration in Fog Environments”. In 2017 IEEE 5th International Conference onFuture

Internet of Things and Cloud (FiCloud), 2017. pages 329-336, Prague,Czech Republic. IEEE.

[VMWARE_NSX] Vmware, VMWARE-NSX [online], Available:

https://www.vmware.com/topics/glossary/content/service-mesh.html

[WANG_ML] Wang, S., Liu, H. et al., “Deep reinforcement learning for dynamic multichannel access in wireless

networks”. IEEE Transactions on Cognitive Communications and Networking, 4(2), 257-265, 2018.

[WANG_ML_SPATIO] Wang, J., Tang, J., Xu, Z., Wang, Y., Xue, G., Zhang, X., & Yang, D. “Spatiotemporal modeling

and prediction in cellular networks: A big data enabled deep learning approach”. In IEEE INFOCOM 2017-

IEEE Conference on Computer Communications (pp. 1-9), 2017.

[WLI_SMCSAFRO] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service Mesh: Challenges, state of the art, and

future research opportunities,” Proc. - 13th IEEE Int. Conf. Serv. Syst. Eng. SOSE 2019, 10th Int. Work. Jt.

Cloud Comput. JCC 2019 2019 IEEE Int. Work. Cloud Comput. Robot. Syst. CCRS 2019, pp. 122–127, 2019.

[YFU_RTDIUBER] Y. Fu and C. Soman, “Real-time Data Infrastructure at Uber”, vol. 1, no. 1. ACM, 2021.

No. Do Contrato: POCI-01-0247-FEDER-049029
© 2021 – Todos os direitos reservados. CONFIDENCIAL Página 87 de 87

[YTSENG_RTMS5NCP] Y. Tseng, G. Aravinthan, B. Berde, S. Imadaliz, D. Houatra, and H. Qiu, “Re-Think

Monitoring Services for 5G Network: Challenges and Perspectives,” Proc. - 6th IEEE Int. Conf. Cyber Secur.

Cloud Comput. CSCloud 2019 5th IEEE Int. Conf. Edge Comput. Scalable Cloud, EdgeCom, pp. 34–39, 2019.

[ZHAO_FAIR] L. Zhao, M. Du and L. Chen, "A new multi-resource allocation mechanism: A tradeoff between

fairness and efficiency in cloud computing," in China Communications, vol. 15, no. 3, pp. 57-77, March 2018.

